BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 16793407)

  • 1. Detecting repair intermediates in vivo: effects of DNA damage response genes on single-stranded DNA accumulation at uncapped telomeres in budding yeast.
    Zubko MK; Maringele L; Foster SS; Lydall D
    Methods Enzymol; 2006; 409():285-300. PubMed ID: 16793407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative amplification of single-stranded DNA (QAOS) demonstrates that cdc13-1 mutants generate ssDNA in a telomere to centromere direction.
    Booth C; Griffith E; Brady G; Lydall D
    Nucleic Acids Res; 2001 Nov; 29(21):4414-22. PubMed ID: 11691929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MRX protects telomeric DNA at uncapped telomeres of budding yeast cdc13-1 mutants.
    Foster SS; Zubko MK; Guillard S; Lydall D
    DNA Repair (Amst); 2006 Jul; 5(7):840-51. PubMed ID: 16765654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exo1 and Rad24 differentially regulate generation of ssDNA at telomeres of Saccharomyces cerevisiae cdc13-1 mutants.
    Zubko MK; Guillard S; Lydall D
    Genetics; 2004 Sep; 168(1):103-15. PubMed ID: 15454530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EXO1-dependent single-stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70Delta mutants.
    Maringele L; Lydall D
    Genes Dev; 2002 Aug; 16(15):1919-33. PubMed ID: 12154123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple, non-radioactive measurement of single-stranded DNA at telomeric, sub-telomeric, and genomic loci in budding yeast.
    Dewar JM; Lydall D
    Methods Mol Biol; 2012; 920():341-8. PubMed ID: 22941615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mrc1 protects uncapped budding yeast telomeres from exonuclease EXO1.
    Tsolou A; Lydall D
    DNA Repair (Amst); 2007 Nov; 6(11):1607-17. PubMed ID: 17618841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linear chromosome maintenance in the absence of essential telomere-capping proteins.
    Zubko MK; Lydall D
    Nat Cell Biol; 2006 Jul; 8(7):734-40. PubMed ID: 16767084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rad6-Bre1 mediated histone H2Bub1 protects uncapped telomeres from exonuclease Exo1 in Saccharomyces cerevisiae.
    Wu Z; He MH; Zhang LL; Liu J; Zhang QD; Zhou JQ
    DNA Repair (Amst); 2018 Dec; 72():64-76. PubMed ID: 30254011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative amplification of single-stranded DNA.
    Holstein EM; Lydall D
    Methods Mol Biol; 2012; 920():323-39. PubMed ID: 22941614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Checkpoint-dependent phosphorylation of Exo1 modulates the DNA damage response.
    Morin I; Ngo HP; Greenall A; Zubko MK; Morrice N; Lydall D
    EMBO J; 2008 Sep; 27(18):2400-10. PubMed ID: 18756267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A genomewide suppressor and enhancer analysis of cdc13-1 reveals varied cellular processes influencing telomere capping in Saccharomyces cerevisiae.
    Addinall SG; Downey M; Yu M; Zubko MK; Dewar J; Leake A; Hallinan J; Shaw O; James K; Wilkinson DJ; Wipat A; Durocher D; Lydall D
    Genetics; 2008 Dec; 180(4):2251-66. PubMed ID: 18845848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vps74 Connects the Golgi Apparatus and Telomeres in
    Rodrigues J; Banks P; Lydall D
    G3 (Bethesda); 2018 May; 8(5):1807-1816. PubMed ID: 29593073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative fitness analysis shows that NMD proteins and many other protein complexes suppress or enhance distinct telomere cap defects.
    Addinall SG; Holstein EM; Lawless C; Yu M; Chapman K; Banks AP; Ngo HP; Maringele L; Taschuk M; Young A; Ciesiolka A; Lister AL; Wipat A; Wilkinson DJ; Lydall D
    PLoS Genet; 2011 Apr; 7(4):e1001362. PubMed ID: 21490951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Base damage within single-strand DNA underlies in vivo hypermutability induced by a ubiquitous environmental agent.
    Chan K; Sterling JF; Roberts SA; Bhagwat AS; Resnick MA; Gordenin DA
    PLoS Genet; 2012; 8(12):e1003149. PubMed ID: 23271983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling the checkpoint response to telomere uncapping in budding yeast.
    Proctor CJ; Lydall DA; Boys RJ; Gillespie CS; Shanley DP; Wilkinson DJ; Kirkwood TB
    J R Soc Interface; 2007 Feb; 4(12):73-90. PubMed ID: 17015293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic Analysis of the DNA Damage Response Network in Telomere Defective Budding Yeast.
    Holstein EM; Ngo G; Lawless C; Banks P; Greetham M; Wilkinson D; Lydall D
    G3 (Bethesda); 2017 Jul; 7(7):2375-2389. PubMed ID: 28546384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ssDNA fragments induce cell senescence by telomere uncapping.
    Tsolou A; Passos JF; Nelson G; Arai Y; Zglinicki Tv
    Exp Gerontol; 2008 Oct; 43(10):892-9. PubMed ID: 18778766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-stranded telomere-binding protein employs a dual rheostat for binding affinity and specificity that drives function.
    Glustrom LW; Lyon KR; Paschini M; Reyes CM; Parsonnet NV; Toro TB; Lundblad V; Wuttke DS
    Proc Natl Acad Sci U S A; 2018 Oct; 115(41):10315-10320. PubMed ID: 30249661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of the determinants for the specific recognition of single-strand telomeric DNA by Cdc13.
    Eldridge AM; Halsey WA; Wuttke DS
    Biochemistry; 2006 Jan; 45(3):871-9. PubMed ID: 16411763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.