BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 16793460)

  • 1. Microneurosurgical training model in fresh cadaveric cow brain: a laboratory study simulating the approach to the circle of Willis.
    Hicdonmez T; Hamamcioglu MK; Tiryaki M; Cukur Z; Cobanoglu S
    Surg Neurol; 2006 Jul; 66(1):100-4; discussion 104. PubMed ID: 16793460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A laboratory training model in fresh cadaveric sheep brain for microneurosurgical dissection of cranial nerves in posterior fossa.
    Hamamcioglu MK; Hicdonmez T; Tiryaki M; Cobanoglu S
    Br J Neurosurg; 2008 Dec; 22(6):769-71. PubMed ID: 19085361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of surgery for craniosynostosis: a training model in a fresh cadaveric sheep cranium. Technical note.
    Hicdonmez T; Parsak T; Cobanoglu S
    J Neurosurg; 2006 Aug; 105(2 Suppl):150-2. PubMed ID: 16922078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laboratory training in the retrosigmoid approach using cadaveric silicone injected cow brain.
    Turan Suslu H; Ceylan D; Tatarlı N; Hıcdonmez T; Seker A; Bayrı Y; Kılıc T
    Br J Neurosurg; 2013 Dec; 27(6):812-4. PubMed ID: 23458576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A laboratory training model using fresh sheep spines for pedicular screw fixation.
    Turan Suslu H; Tatarli N; Hicdonmez T; Borekci A
    Br J Neurosurg; 2012 Apr; 26(2):252-4. PubMed ID: 22087885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human cadaver brain infusion model for neurosurgical training.
    Olabe J; Olabe J; Sancho V
    Surg Neurol; 2009 Dec; 72(6):700-2. PubMed ID: 19664809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new training method to improve deep microsurgical skills using a mannequin head.
    Takeuchi M; Hayashi N; Hamada H; Matsumura N; Nishijo H; Endo S
    Microsurgery; 2008; 28(3):168-70. PubMed ID: 18286651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endoscopic endonasal transsphenoidal exposure of circle of Willis (CW); can it be applied in vascular neurosurgery in the near future? A cadaveric study of 26 cases.
    Chowdhury FH; Haque MR; Kawsar KA; Ara S; Mohammod QD; Sarker MH; Goel AH
    Turk Neurosurg; 2012; 22(1):68-76. PubMed ID: 22274974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Training of deep microsurgical skills.
    Menovsky T; De Ridder D
    Microsurgery; 2008; 28(5):390-1. PubMed ID: 18561262
    [No Abstract]   [Full Text] [Related]  

  • 10. A laboratory training model for interhemispheric-transcallosal approach to the lateral ventricle.
    Hicdonmez T; Hamamcioglu MK; Parsak T; Cukur Z; Cobanoglu S
    Neurosurg Rev; 2006 Apr; 29(2):159-62. PubMed ID: 16374648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Microsurgical anatomy and standard technique for anterior communicating artery aneurysms].
    Onkuma H; Munakata A; Shimamura N
    No Shinkei Geka; 2008 Jan; 36(1):27-43. PubMed ID: 18232319
    [No Abstract]   [Full Text] [Related]  

  • 12. Microsurgical training model for residents to approach to the orbit and the optic nerve in fresh cadaveric sheep cranium.
    Altunrende ME; Hamamcioglu MK; Hıcdonmez T; Akcakaya MO; Bırgılı B; Cobanoglu S
    J Neurosci Rural Pract; 2014 Apr; 5(2):151-4. PubMed ID: 24966554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microsurgically induced aneurysm models in rats, part I: techniques and histological examination.
    Scholz M; Mücke T; Düring Mv; Pechlivanis I; Schmieder K; Harders AG
    Minim Invasive Neurosurg; 2008 Apr; 51(2):76-82. PubMed ID: 18401818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning brain aneurysm microsurgical skills in a human placenta model: predictive validity.
    de Oliveira MMR; Ferrarez CE; Ramos TM; Malheiros JA; Nicolato A; Machado CJ; Ferreira MT; de Oliveira FB; de Sousa CFPM; Costa PHV; Gusmao S; Lanzino G; Maestro RD
    J Neurosurg; 2018 Mar; 128(3):846-852. PubMed ID: 28338438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Some collected principles of microneurosurgery: simple and fast, while preserving normal anatomy: a review.
    Hernesniemi J; Niemelä M; Karatas A; Kivipelto L; Ishii K; Rinne J; Ronkainen A; Koivisto T; Kivisaari R; Shen H; Lehecka M; Frösen J; Piippo A; Jääskeläinen JE
    Surg Neurol; 2005 Sep; 64(3):195-200. PubMed ID: 16099243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel simulation model for minimally invasive spine surgery.
    Walker JB; Perkins E; Harkey HL
    Neurosurgery; 2009 Dec; 65(6 Suppl):188-95; discussion 195. PubMed ID: 19934994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bilateral middle cerebral artery aneurysms.
    Menovsky T; Grotenhuis JA
    Acta Neurochir (Wien); 2005 Sep; 147(9):1007. PubMed ID: 16133781
    [No Abstract]   [Full Text] [Related]  

  • 18. A human skull cast model for training of intracranial microneurosurgical skills.
    Menovsky T
    Microsurgery; 2000; 20(7):311-3. PubMed ID: 11119285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multiposition brain holder: a versatile appliance for microneurosurgical laboratory.
    Bhatjiwale MG; Goel A; Muzumdar DP
    J Postgrad Med; 2001; 47(1):82-3. PubMed ID: 11590305
    [No Abstract]   [Full Text] [Related]  

  • 20. A model for foramen ovale puncture training: Technical note.
    Almeida DB; Hunhevicz S; Bordignon K; Barros E; Mehl AA; Burak Mehl AC; de Faria RA; Prandini M; Ramina R
    Acta Neurochir (Wien); 2006 Aug; 148(8):881-3; discussion 883. PubMed ID: 16791431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.