BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 16793522)

  • 1. Rational design of combination enzyme therapy for celiac sprue.
    Siegel M; Bethune MT; Gass J; Ehren J; Xia J; Johannsen A; Stuge TB; Gray GM; Lee PP; Khosla C
    Chem Biol; 2006 Jun; 13(6):649-58. PubMed ID: 16793522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination enzyme therapy for gastric digestion of dietary gluten in patients with celiac sprue.
    Gass J; Bethune MT; Siegel M; Spencer A; Khosla C
    Gastroenterology; 2007 Aug; 133(2):472-80. PubMed ID: 17681168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fermentation, purification, formulation, and pharmacological evaluation of a prolyl endopeptidase from Myxococcus xanthus: implications for Celiac Sprue therapy.
    Gass J; Ehren J; Strohmeier G; Isaacs I; Khosla C
    Biotechnol Bioeng; 2005 Dec; 92(6):674-84. PubMed ID: 16136593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A scaleable manufacturing process for pro-EP-B2, a cysteine protease from barley indicated for celiac sprue.
    Vora H; McIntire J; Kumar P; Deshpande M; Khosla C
    Biotechnol Bioeng; 2007 Sep; 98(1):177-85. PubMed ID: 17385743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prolyl endopeptidase-mediated destruction of T cell epitopes in whole gluten: chemical and immunological characterization.
    Marti T; Molberg O; Li Q; Gray GM; Khosla C; Sollid LM
    J Pharmacol Exp Ther; 2005 Jan; 312(1):19-26. PubMed ID: 15358813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of barley endoprotease EP-B2 on gluten digestion in the intact rat.
    Gass J; Vora H; Bethune MT; Gray GM; Khosla C
    J Pharmacol Exp Ther; 2006 Sep; 318(3):1178-86. PubMed ID: 16757540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient gluten degradation with a newly identified prolyl endoprotease: implications for celiac disease.
    Stepniak D; Spaenij-Dekking L; Mitea C; Moester M; de Ru A; Baak-Pablo R; van Veelen P; Edens L; Koning F
    Am J Physiol Gastrointest Liver Physiol; 2006 Oct; 291(4):G621-9. PubMed ID: 16690904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterologous expression, purification, refolding, and structural-functional characterization of EP-B2, a self-activating barley cysteine endoprotease.
    Bethune MT; Strop P; Tang Y; Sollid LM; Khosla C
    Chem Biol; 2006 Jun; 13(6):637-47. PubMed ID: 16793521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A quantitative analysis of transglutaminase 2-mediated deamidation of gluten peptides: implications for the T-cell response in celiac disease.
    Dørum S; Qiao SW; Sollid LM; Fleckenstein B
    J Proteome Res; 2009 Apr; 8(4):1748-55. PubMed ID: 19239248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for gluten intolerance in celiac sprue.
    Shan L; Molberg Ø; Parrot I; Hausch F; Filiz F; Gray GM; Sollid LM; Khosla C
    Science; 2002 Sep; 297(5590):2275-9. PubMed ID: 12351792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Treatment of both native and deamidated gluten peptides with an endo-peptidase from Aspergillus niger prevents stimulation of gut-derived gluten-reactive T cells from either children or adults with celiac disease.
    Toft-Hansen H; Rasmussen KS; Staal A; Roggen EL; Sollid LM; Lillevang ST; Barington T; Husby S
    Clin Immunol; 2014 Aug; 153(2):323-31. PubMed ID: 24905137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative biochemical analysis of three bacterial prolyl endopeptidases: implications for coeliac sprue.
    Shan L; Marti T; Sollid LM; Gray GM; Khosla C
    Biochem J; 2004 Oct; 383(Pt 2):311-8. PubMed ID: 15245330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic detoxification of gluten by germinating wheat proteases: implications for new treatment of celiac disease.
    Stenman SM; Venäläinen JI; Lindfors K; Auriola S; Mauriala T; Kaukovirta-Norja A; Jantunen A; Laurila K; Qiao SW; Sollid LM; Männisto PT; Kaukinen K; Mäki M
    Ann Med; 2009; 41(5):390-400. PubMed ID: 19353359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Celiac disease: from gluten to autoimmunity.
    Briani C; Samaroo D; Alaedini A
    Autoimmun Rev; 2008 Sep; 7(8):644-50. PubMed ID: 18589004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted modification of wheat grain protein to reduce the content of celiac causing epitopes.
    Osorio C; Wen N; Gemini R; Zemetra R; von Wettstein D; Rustgi S
    Funct Integr Genomics; 2012 Aug; 12(3):417-38. PubMed ID: 22732824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the binding of gluten T-cell epitopes to various human leukocyte antigen class II molecules.
    Bergseng E; Sidney J; Sette A; Sollid LM
    Hum Immunol; 2008 Feb; 69(2):94-100. PubMed ID: 18361933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Celiac disease: from pathogenesis to novel therapies.
    Schuppan D; Junker Y; Barisani D
    Gastroenterology; 2009 Dec; 137(6):1912-33. PubMed ID: 19766641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gluten peptides and celiac disease.
    Koning F; Vader W
    Science; 2003 Jan; 299(5606):513-5; author reply 513-5. PubMed ID: 12546006
    [No Abstract]   [Full Text] [Related]  

  • 19. A unique dendritic cell subset accumulates in the celiac lesion and efficiently activates gluten-reactive T cells.
    Ráki M; Tollefsen S; Molberg Ø; Lundin KE; Sollid LM; Jahnsen FL
    Gastroenterology; 2006 Aug; 131(2):428-38. PubMed ID: 16890596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallels between pathogens and gluten peptides in celiac sprue.
    Bethune MT; Khosla C
    PLoS Pathog; 2008 Feb; 4(2):e34. PubMed ID: 18425213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.