These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

719 related articles for article (PubMed ID: 16793895)

  • 1. Earlier development of the accumbens relative to orbitofrontal cortex might underlie risk-taking behavior in adolescents.
    Galvan A; Hare TA; Parra CE; Penn J; Voss H; Glover G; Casey BJ
    J Neurosci; 2006 Jun; 26(25):6885-92. PubMed ID: 16793895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Risk-taking and the adolescent brain: who is at risk?
    Galvan A; Hare T; Voss H; Glover G; Casey BJ
    Dev Sci; 2007 Mar; 10(2):F8-F14. PubMed ID: 17286837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incentive-elicited brain activation in adolescents: similarities and differences from young adults.
    Bjork JM; Knutson B; Fong GW; Caggiano DM; Bennett SM; Hommer DW
    J Neurosci; 2004 Feb; 24(8):1793-802. PubMed ID: 14985419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleus accumbens activation mediates the influence of reward cues on financial risk taking.
    Knutson B; Wimmer GE; Kuhnen CM; Winkielman P
    Neuroreport; 2008 Mar; 19(5):509-13. PubMed ID: 18388729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological substrates of emotional reactivity and regulation in adolescence during an emotional go-nogo task.
    Hare TA; Tottenham N; Galvan A; Voss HU; Glover GH; Casey BJ
    Biol Psychiatry; 2008 May; 63(10):927-34. PubMed ID: 18452757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effort discounting in human nucleus accumbens.
    Botvinick MM; Huffstetler S; McGuire JT
    Cogn Affect Behav Neurosci; 2009 Mar; 9(1):16-27. PubMed ID: 19246324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amygdala and nucleus accumbens in responses to receipt and omission of gains in adults and adolescents.
    Ernst M; Nelson EE; Jazbec S; McClure EB; Monk CS; Leibenluft E; Blair J; Pine DS
    Neuroimage; 2005 May; 25(4):1279-91. PubMed ID: 15850746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural correlates of expected risks and returns in risky choice across development.
    van Duijvenvoorde AC; Huizenga HM; Somerville LH; Delgado MR; Powers A; Weeda WD; Casey BJ; Weber EU; Figner B
    J Neurosci; 2015 Jan; 35(4):1549-60. PubMed ID: 25632132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Longitudinal changes in adolescent risk-taking: a comprehensive study of neural responses to rewards, pubertal development, and risk-taking behavior.
    Braams BR; van Duijvenvoorde AC; Peper JS; Crone EA
    J Neurosci; 2015 May; 35(18):7226-38. PubMed ID: 25948271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adolescent neural response to reward is related to participant sex and task motivation.
    Alarcón G; Cservenka A; Nagel BJ
    Brain Cogn; 2017 Feb; 111():51-62. PubMed ID: 27816780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adolescent risk-taking and resting state functional connectivity.
    DeWitt SJ; Aslan S; Filbey FM
    Psychiatry Res; 2014 Jun; 222(3):157-64. PubMed ID: 24796655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immaturities in reward processing and its influence on inhibitory control in adolescence.
    Geier CF; Terwilliger R; Teslovich T; Velanova K; Luna B
    Cereb Cortex; 2010 Jul; 20(7):1613-29. PubMed ID: 19875675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distributed neural representation of expected value.
    Knutson B; Taylor J; Kaufman M; Peterson R; Glover G
    J Neurosci; 2005 May; 25(19):4806-12. PubMed ID: 15888656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective activation of the nucleus accumbens during risk-taking decision making.
    Matthews SC; Simmons AN; Lane SD; Paulus MP
    Neuroreport; 2004 Sep; 15(13):2123-7. PubMed ID: 15486494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Risk-taking in adolescence: A neuroeconomics approach].
    Barbalat G; Domenech P; Vernet M; Fourneret P
    Encephale; 2010 Apr; 36(2):147-54. PubMed ID: 20434632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional dissociation in frontal and striatal areas for processing of positive and negative reward information.
    Liu X; Powell DK; Wang H; Gold BT; Corbly CR; Joseph JE
    J Neurosci; 2007 Apr; 27(17):4587-97. PubMed ID: 17460071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of ventral frontostriatal circuitry in reward-based learning in humans.
    Galvan A; Hare TA; Davidson M; Spicer J; Glover G; Casey BJ
    J Neurosci; 2005 Sep; 25(38):8650-6. PubMed ID: 16177032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Testosterone during Puberty Shifts Emotional Control from Pulvinar to Anterior Prefrontal Cortex.
    Tyborowska A; Volman I; Smeekens S; Toni I; Roelofs K
    J Neurosci; 2016 Jun; 36(23):6156-64. PubMed ID: 27277794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frontal glutamate and reward processing in adolescence and adulthood.
    Gleich T; Lorenz RC; Pöhland L; Raufelder D; Deserno L; Beck A; Heinz A; Kühn S; Gallinat J
    Brain Struct Funct; 2015 Nov; 220(6):3087-99. PubMed ID: 25009315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age associations with neural processing of reward anticipation in adolescents with bipolar disorders.
    Urošević S; Luciana M; Jensen JB; Youngstrom EA; Thomas KM
    Neuroimage Clin; 2016; 11():476-485. PubMed ID: 27114896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.