These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 16794704)

  • 1. Single-molecule detection sensitivity using planar integrated optics on a chip.
    Yin D; Deamer DW; Schmidt H; Barber JP; Hawkins AR
    Opt Lett; 2006 Jul; 31(14):2136-8. PubMed ID: 16794704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Planar optofluidic chip for single particle detection, manipulation, and analysis.
    Yin D; Lunt EJ; Rudenko MI; Deamer DW; Hawkins AR; Schmidt H
    Lab Chip; 2007 Sep; 7(9):1171-5. PubMed ID: 17713616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering the collected field for single-molecule orientation determination.
    Sikorski Z; Davis LM
    Opt Express; 2008 Mar; 16(6):3660-73. PubMed ID: 18542460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser-induced fluorescence microscopic system using an optical parametric oscillator for tunable detection in microchip analysis.
    Kumemura M; Odake T; Korenaga T
    Anal Bioanal Chem; 2005 Jun; 382(4):992-5. PubMed ID: 15928948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence monitoring of microchip capillary electrophoresis separation with monolithically integrated waveguides.
    Dongre C; Dekker R; Hoekstra HJ; Pollnau M; Martinez-Vazquez R; Osellame R; Cerullo G; Ramponi R; van Weeghel R; Besselink GA; van den Vlekkert HH
    Opt Lett; 2008 Nov; 33(21):2503-5. PubMed ID: 18978901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultralow power trapping and fluorescence detection of single particles on an optofluidic chip.
    Kühn S; Phillips BS; Lunt EJ; Hawkins AR; Schmidt H
    Lab Chip; 2010 Jan; 10(2):189-94. PubMed ID: 20066246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Miniaturized and integrated fluorescence detectors for microfluidic capillary electrophoresis devices.
    Kamei T
    Methods Mol Biol; 2009; 503():361-74. PubMed ID: 19151952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and fabrication of a silica on silicon integrated optical biochip as a fluorescence microarray platform.
    Ruano JM; Glidle A; Cleary A; Walmsley A; Aitchison JS; Cooper JM
    Biosens Bioelectron; 2003 Mar; 18(2-3):175-84. PubMed ID: 12485763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallel single molecule detection with a fully integrated single-photon 2x2 CMOS detector array.
    Gösch M; Serov A; Anhut T; Lasser T; Rochas A; Besse PA; Popovic RS; Blom H; Rigler R
    J Biomed Opt; 2004; 9(5):913-21. PubMed ID: 15447011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-mode mitigation in an optofluidic chip for particle manipulation and sensing.
    Measor P; Kühn S; Lunt EJ; Phillips BS; Hawkins AR; Schmidt H
    Opt Express; 2009 Dec; 17(26):24342-8. PubMed ID: 20052144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultracompact alignment-free single molecule fluorescence device with a foldable light path.
    Singh NK; Chacko JV; Sreenivasan VK; Nag S; Maiti S
    J Biomed Opt; 2011 Feb; 16(2):025004. PubMed ID: 21361684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Future lab-on-a-chip technologies for interrogating individual molecules.
    Craighead H
    Nature; 2006 Jul; 442(7101):387-93. PubMed ID: 16871206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and characterization of a femtosecond fluorescence spectrometer based on optical Kerr gating.
    Arzhantsev S; Maroncelli M
    Appl Spectrosc; 2005 Feb; 59(2):206-20. PubMed ID: 15720762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A photonic-microfluidic integrated device for reliable fluorescence detection and counting.
    Watts BR; Zhang Z; Xu CQ; Cao X; Lin M
    Electrophoresis; 2012 Nov; 33(21):3236-44. PubMed ID: 23065957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An integrated hybrid interference and absorption filter for fluorescence detection in lab-on-a-chip devices.
    Richard C; Renaudin A; Aimez V; Charette PG
    Lab Chip; 2009 May; 9(10):1371-6. PubMed ID: 19417903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prism-based multicolor fluorescence correlation spectrometer.
    Hwang LC; Leutenegger M; Gösch M; Lasser T; Rigler P; Meier W; Wohland T
    Opt Lett; 2006 May; 31(9):1310-2. PubMed ID: 16642095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microphotonic control of single molecule fluorescence correlation spectroscopy using planar optofluidics.
    Yin D; Lunt EJ; Barman A; Hawkins AR; Schmidt H
    Opt Express; 2007 Jun; 15(12):7290-5. PubMed ID: 19547052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems.
    Mogensen KB; El-Ali J; Wolff A; Kutter JP
    Appl Opt; 2003 Jul; 42(19):4072-9. PubMed ID: 12868849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A versatile multimode microscope to probe and manipulate nanoparticles and biomolecules.
    Kyoung M; Karunwi K; Sheets ED
    J Microsc; 2007 Feb; 225(Pt 2):137-46. PubMed ID: 17359248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous determination of pH, urea, acetylcholine and heavy metals using array-based enzymatic optical biosensor.
    Tsai HC; Doong RA
    Biosens Bioelectron; 2005 Mar; 20(9):1796-804. PubMed ID: 15681196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.