BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

405 related articles for article (PubMed ID: 16794778)

  • 1. Properties of shaker-type potassium channels in higher plants.
    Gambale F; Uozumi N
    J Membr Biol; 2006 Mar; 210(1):1-19. PubMed ID: 16794778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular biology of K+ transport across the plant cell membrane: what do we learn from comparison between plant species?
    Véry AA; Nieves-Cordones M; Daly M; Khan I; Fizames C; Sentenac H
    J Plant Physiol; 2014 May; 171(9):748-69. PubMed ID: 24666983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional characterization and physiological roles of the single Shaker outward K
    Drain A; Thouin J; Wang L; Boeglin M; Pauly N; Nieves-Cordones M; Gaillard I; Véry AA; Sentenac H
    Plant J; 2020 Jun; 102(6):1249-1265. PubMed ID: 31958173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AtKC1 is a general modulator of Arabidopsis inward Shaker channel activity.
    Jeanguenin L; Alcon C; Duby G; Boeglin M; Chérel I; Gaillard I; Zimmermann S; Sentenac H; Véry AA
    Plant J; 2011 Aug; 67(4):570-82. PubMed ID: 21518051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional characterization of GhAKT1, a novel Shaker-like K⁺ channel gene involved in K⁺ uptake from cotton (Gossypium hirsutum).
    Xu J; Tian X; Egrinya Eneji A; Li Z
    Gene; 2014 Jul; 545(1):61-71. PubMed ID: 24802116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles and Transport of Sodium and Potassium in Plants.
    Nieves-Cordones M; Al Shiblawi FR; Sentenac H
    Met Ions Life Sci; 2016; 16():291-324. PubMed ID: 26860305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. K+ channel activity in plants: genes, regulations and functions.
    Lebaudy A; Véry AA; Sentenac H
    FEBS Lett; 2007 May; 581(12):2357-66. PubMed ID: 17418142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of the S4-S5 linker and the C-linker domain regions to voltage-gating in plant Shaker channels: comparison with animal HCN and Kv channels.
    Nieves-Cordones M; Gaillard I
    Plant Signal Behav; 2014; 9(10):e972892. PubMed ID: 25482770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular insights into the structure and function of plant K(+) transport mechanisms.
    Schachtman DP
    Biochim Biophys Acta; 2000 May; 1465(1-2):127-39. PubMed ID: 10748250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mechanisms and regulation of K+ transport in higher plants.
    Véry AA; Sentenac H
    Annu Rev Plant Biol; 2003; 54():575-603. PubMed ID: 14503004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Shaker K
    Chen G; Chen Q; Qi K; Xie Z; Yin H; Wang P; Wang R; Huang Z; Zhang S; Wang L; Wu J
    Planta; 2019 Dec; 250(6):1911-1925. PubMed ID: 31523779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrate-Dependent Control of Shoot K Homeostasis by the Nitrate Transporter1/Peptide Transporter Family Member NPF7.3/NRT1.5 and the Stelar K+ Outward Rectifier SKOR in Arabidopsis.
    Drechsler N; Zheng Y; Bohner A; Nobmann B; von Wirén N; Kunze R; Rausch C
    Plant Physiol; 2015 Dec; 169(4):2832-47. PubMed ID: 26508776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potassium transporters in plants--involvement in K+ acquisition, redistribution and homeostasis.
    Gierth M; Mäser P
    FEBS Lett; 2007 May; 581(12):2348-56. PubMed ID: 17397836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shaker-like potassium channels in Populus, regulated by the CBL-CIPK signal transduction pathway, increase tolerance to low-K+ stress.
    Zhang H; Yin W; Xia X
    Plant Cell Rep; 2010 Sep; 29(9):1007-12. PubMed ID: 20582419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion channels in plants.
    Hedrich R
    Physiol Rev; 2012 Oct; 92(4):1777-811. PubMed ID: 23073631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constitutive expression of CmSKOR, an outward K
    Long-Tang H; Li-Na Z; Li-Wei G; Anne-Aliénor V; Hervé S; Yi-Dong Z
    Plant Sci; 2018 Sep; 274():492-502. PubMed ID: 30080639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orientation of Arabidopsis thaliana KAT1 channel in the plasma membrane.
    Mura CV; Cosmelli D; Muñoz F; Delgado R
    J Membr Biol; 2004 Oct; 201(3):157-65. PubMed ID: 15711775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct roles of the last transmembrane domain in controlling Arabidopsis K+ channel activity.
    Gajdanowicz P; Garcia-Mata C; Gonzalez W; Morales-Navarro SE; Sharma T; González-Nilo FD; Gutowicz J; Mueller-Roeber B; Blatt MR; Dreyer I
    New Phytol; 2009; 182(2):380-391. PubMed ID: 19192193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pollen tube development and competitive ability are impaired by disruption of a Shaker K(+) channel in Arabidopsis.
    Mouline K; Véry AA; Gaymard F; Boucherez J; Pilot G; Devic M; Bouchez D; Thibaud JB; Sentenac H
    Genes Dev; 2002 Feb; 16(3):339-50. PubMed ID: 11825875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Outward-rectifying K+ channel activities regulate cell elongation and cell division of tobacco BY-2 cells.
    Sano T; Kutsuna N; Becker D; Hedrich R; Hasezawa S
    Plant J; 2009 Jan; 57(1):55-64. PubMed ID: 18778403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.