BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 16794869)

  • 1. Fluorescence resonance energy transfer and complex formation between thiazole orange and various dye-DNA conjugates: implications in signaling nucleic acid hybridization.
    Algar WR; Massey M; Krull UJ
    J Fluoresc; 2006 Jul; 16(4):555-67. PubMed ID: 16794869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence resonance energy transfer (FRET) for DNA biosensors: FRET pairs and Förster distances for various dye-DNA conjugates.
    Massey M; Algar WR; Krull UJ
    Anal Chim Acta; 2006 May; 568(1-2):181-9. PubMed ID: 17761259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CTAB enhancement of FRET in DNA structures.
    Oh T; Takahashi T; Kim S; Heller MJ
    J Biophotonics; 2016 Jan; 9(1-2):49-54. PubMed ID: 26530400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence resonance energy transfer (FRET) and competing processes in donor-acceptor substituted DNA strands: a comparative study of ensemble and single-molecule data.
    Dietrich A; Buschmann V; Müller C; Sauer M
    J Biotechnol; 2002 Jan; 82(3):211-31. PubMed ID: 11999691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Paper-based platform for detection by hybridization using intrinsically labeled fluorescent oligonucleotide probes on quantum dots.
    Shahmuradyan A; Moazami-Goudarzi M; Kitazume F; Espie GS; Krull UJ
    Analyst; 2019 Feb; 144(4):1223-1229. PubMed ID: 30534674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsically Labeled Fluorescent Oligonucleotide Probes on Quantum Dots for Transduction of Nucleic Acid Hybridization.
    Shahmuradyan A; Krull UJ
    Anal Chem; 2016 Mar; 88(6):3186-93. PubMed ID: 26866462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence energy-transfer cyanine heterodimers with high affinity for double-stranded DNA. I. Synthesis and spectroscopic properties.
    Benson SC; Zeng Z; Glazer AN
    Anal Biochem; 1995 Oct; 231(1):247-55. PubMed ID: 8678308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An enzyme free fluorescence resonance transfer strategy based on hybrid chain reaction and triplex DNA for Vibrio parahaemolyticus.
    Tan XH; Li YB; Liao Y; Liu HZ
    Sci Rep; 2020 Nov; 10(1):20710. PubMed ID: 33244061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FRET studies of the interaction of dimeric cyanine dyes with DNA.
    Laib S; Seeger S
    J Fluoresc; 2004 Mar; 14(2):187-91. PubMed ID: 15615044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fluorescence resonance energy transfer sensor based on maltose binding protein.
    Medintz IL; Goldman ER; Lassman ME; Mauro JM
    Bioconjug Chem; 2003; 14(5):909-18. PubMed ID: 13129393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing.
    Algar WR; Wegner D; Huston AL; Blanco-Canosa JB; Stewart MH; Armstrong A; Dawson PE; Hildebrandt N; Medintz IL
    J Am Chem Soc; 2012 Jan; 134(3):1876-91. PubMed ID: 22220737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of nucleic acid hybridization by nonradiative fluorescence resonance energy transfer.
    Cardullo RA; Agrawal S; Flores C; Zamecnik PC; Wolf DE
    Proc Natl Acad Sci U S A; 1988 Dec; 85(23):8790-4. PubMed ID: 3194390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A DNA hybridization detection based on fluorescence resonance energy transfer between dye-doped core-shell silica nanoparticles and gold nanoparticles.
    Gao F; Cui P; Chen X; Ye Q; Li M; Wang L
    Analyst; 2011 Oct; 136(19):3973-80. PubMed ID: 21845282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards multi-colour strategies for the detection of oligonucleotide hybridization using quantum dots as energy donors in fluorescence resonance energy transfer (FRET).
    Algar WR; Krull UJ
    Anal Chim Acta; 2007 Jan; 581(2):193-201. PubMed ID: 17386444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonance energy transfer in DNA duplexes labeled with localized dyes.
    Cunningham PD; Khachatrian A; Buckhout-White S; Deschamps JR; Goldman ER; Medintz IL; Melinger JS
    J Phys Chem B; 2014 Dec; 118(50):14555-65. PubMed ID: 25397906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence resonance energy transfer dye-labeled probe for fluorescence-enhanced DNA detection: an effective strategy to greatly improve discrimination ability toward single-base mismatch.
    Li H; Luo Y; Sun X
    Biosens Bioelectron; 2011 Sep; 27(1):167-71. PubMed ID: 21783356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thioflavin T as an Efficient G-Quadruplex Inducer for the Highly Sensitive Detection of Thrombin Using a New Föster Resonance Energy Transfer System.
    Liu X; Hua X; Fan Q; Chao J; Su S; Huang YQ; Wang L; Huang W
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16458-65. PubMed ID: 26173915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of DNA hybridization using induced fluorescence resonance energy transfer.
    Howell WM
    Methods Mol Biol; 2006; 335():33-41. PubMed ID: 16785618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-chip multiplexed solid-phase nucleic acid hybridization assay using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer.
    Noor MO; Tavares AJ; Krull UJ
    Anal Chim Acta; 2013 Jul; 788():148-57. PubMed ID: 23845494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ratiometric fluorescence transduction by hybridization after isothermal amplification for determination of zeptomole quantities of oligonucleotide biomarkers with a paper-based platform and camera-based detection.
    Noor MO; Hrovat D; Moazami-Goudarzi M; Espie GS; Krull UJ
    Anal Chim Acta; 2015 Jul; 885():156-65. PubMed ID: 26231901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.