BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 16794873)

  • 1. Monitoring pyrene excimers in lactose permease liposomes: revealing the presence of phosphatidylglycerol in proximity to an integral membrane protein.
    Picas L; Merino-Montero S; Morros A; Hernández-Borrell J; Montero MT
    J Fluoresc; 2007 Nov; 17(6):649-54. PubMed ID: 16794873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence of phosphatidylethanolamine and phosphatidylglycerol presence at the annular region of lactose permease of Escherichia coli.
    Picas L; Montero MT; Morros A; Vázquez-Ibar JL; Hernández-Borrell J
    Biochim Biophys Acta; 2010 Feb; 1798(2):291-6. PubMed ID: 19595667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for phospholipid microdomain formation in liquid crystalline liposomes reconstituted with Escherichia coli lactose permease.
    Lehtonen JY; Kinnunen PK
    Biophys J; 1997 Mar; 72(3):1247-57. PubMed ID: 9138570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphatidylethanolamine-lactose permease interaction: a comparative study based on FRET.
    Suárez-Germà C; Loura LM; Domènech O; Montero MT; Vázquez-Ibar JL; Hernández-Borrell J
    J Phys Chem B; 2012 Dec; 116(48):14023-8. PubMed ID: 23137163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling FRET to investigate the selectivity of lactose permease of Escherichia coli for lipids.
    Suárez-Germà C; Hernández-Borrell J; Prieto M; Loura LM
    Mol Membr Biol; 2014 Jun; 31(4):120-30. PubMed ID: 24826799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of lactose permease presence on the structure and nanomechanics of two-component supported lipid bilayers.
    Suárez-Germà C; Domènech O; Montero MT; Hernández-Borrell J
    Biochim Biophys Acta; 2014 Mar; 1838(3):842-52. PubMed ID: 24316189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical Temperature of 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine Monolayers and Its Possible Biological Relevance.
    Borrell JH; Domènech Ò
    J Phys Chem B; 2017 Jul; 121(28):6882-6889. PubMed ID: 28636818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preferential insertion of lactose permease in phospholipid domains: AFM observations.
    Picas L; Carretero-Genevrier A; Montero MT; Vázquez-Ibar JL; Seantier B; Milhiet PE; Hernández-Borrell J
    Biochim Biophys Acta; 2010 May; 1798(5):1014-9. PubMed ID: 20096263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane protein-lipid selectivity: enhancing sensitivity for modeling FRET data.
    Suárez-Germà C; Loura LM; Prieto M; Domènech Ò; Montero MT; Rodríguez-Banqueri A; Vázquez-Ibar JL; Hernández-Borrell J
    J Phys Chem B; 2012 Mar; 116(8):2438-45. PubMed ID: 22296326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phospholipid-lactose permease interaction as reported by a head-labeled pyrene phosphatidylethanolamine: a FRET study.
    Suárez-Germà C; Loura LM; Prieto M; Domènech Ò; Campanera JM; Montero MT; Hernández-Borrell J
    J Phys Chem B; 2013 Jun; 117(22):6741-8. PubMed ID: 23647499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unspecific membrane protein-lipid recognition: combination of AFM imaging, force spectroscopy, DSC and FRET measurements.
    Borrell JH; Montero MT; Morros A; Domènech Ò
    J Mol Recognit; 2015 Nov; 28(11):679-86. PubMed ID: 26046777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force spectroscopy study of Langmuir-Blodgett asymmetric bilayers of phosphatidylethanolamine and phosphatidylglycerol.
    Picas L; Suárez-Germà C; Teresa Montero M; Hernández-Borrell J
    J Phys Chem B; 2010 Mar; 114(10):3543-9. PubMed ID: 20175552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic force microscopy study of Escherichia coli lactose permease proteolipid sheets.
    Merino S; Domènech O; Montero MT; Hernández-Borrell J
    Biosens Bioelectron; 2005 Mar; 20(9):1843-6. PubMed ID: 15681202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interhelical packing modulates conformational flexibility in the lactose permease of Escherichia coli.
    Ermolova NV; Smirnova IN; Kasho VN; Kaback HR
    Biochemistry; 2005 May; 44(21):7669-77. PubMed ID: 15909981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface planar bilayers of phospholipids used in protein membrane reconstitution: an atomic force microscopy study.
    Doménech O; Merino-Montero S; Montero MT; Hernández-Borrell J
    Colloids Surf B Biointerfaces; 2006 Jan; 47(1):102-6. PubMed ID: 16406753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relative domain folding and stability of a membrane transport protein.
    Harris NJ; Findlay HE; Simms J; Liu X; Booth PJ
    J Mol Biol; 2014 Apr; 426(8):1812-25. PubMed ID: 24530957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diversity in kinetics correlated with structure in nano body-stabilized LacY.
    Kumar H; Finer-Moore J; Smirnova I; Kasho V; Pardon E; Steyaert J; Kaback HR; Stroud RM
    PLoS One; 2020; 15(5):e0232846. PubMed ID: 32380514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct sugar binding to LacY measured by resonance energy transfer.
    Smirnova IN; Kasho VN; Kaback HR
    Biochemistry; 2006 Dec; 45(51):15279-87. PubMed ID: 17176050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lactose permease lipid selectivity using Förster resonance energy transfer.
    Picas L; Suárez-Germà C; Montero MT; Vázquez-Ibar JL; Hernández-Borrell J; Prieto M; Loura LM
    Biochim Biophys Acta; 2010 Sep; 1798(9):1707-13. PubMed ID: 20488161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasticity of lipid-protein interactions in the function and topogenesis of the membrane protein lactose permease from Escherichia coli.
    Bogdanov M; Heacock P; Guan Z; Dowhan W
    Proc Natl Acad Sci U S A; 2010 Aug; 107(34):15057-62. PubMed ID: 20696931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.