These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 16794937)

  • 1. A model of spatial epidemic spread when individuals move within overlapping home ranges.
    Reluga TC; Medlock J; Galvani AP
    Bull Math Biol; 2006 Feb; 68(2):401-16. PubMed ID: 16794937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multi-species epidemic model with spatial dynamics.
    Arino J; Davis JR; Hartley D; Jordan R; Miller JM; van den Driessche P
    Math Med Biol; 2005 Jun; 22(2):129-42. PubMed ID: 15778332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A useful relationship between epidemiology and queueing theory: the distribution of the number of infectives at the moment of the first detection.
    Trapman P; Bootsma MC
    Math Biosci; 2009 May; 219(1):15-22. PubMed ID: 19233215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contact rate calculation for a basic epidemic model.
    Rhodes CJ; Anderson RM
    Math Biosci; 2008 Nov; 216(1):56-62. PubMed ID: 18783724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal treatment of an SIR epidemic model with time delay.
    Zaman G; Kang YH; Jung IH
    Biosystems; 2009 Oct; 98(1):43-50. PubMed ID: 19464340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The basic reproduction number and the probability of extinction for a dynamic epidemic model.
    Neal P
    Math Biosci; 2012 Mar; 236(1):31-5. PubMed ID: 22269870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuum description of a contact infection spread in a SIR model.
    Postnikov EB; Sokolov IM
    Math Biosci; 2007 Jul; 208(1):205-15. PubMed ID: 17174353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic modeling of nonlinear epidemiology.
    Chen WY; Bokka S
    J Theor Biol; 2005 Jun; 234(4):455-70. PubMed ID: 15808867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of spatial movement and group interactions on disease dynamics of social animals.
    Gudelj I; White KA; Britton NF
    Bull Math Biol; 2004 Jan; 66(1):91-108. PubMed ID: 14670531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new explanatory model of an SIR disease epidemic: a knowledge-based, probabilistic approach to epidemic analysis.
    Sayers BM; Angulo J
    Scand J Infect Dis; 2005; 37(1):55-60. PubMed ID: 15764191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of time distribution shape on a complex epidemic model.
    Camitz M; Svensson A
    Bull Math Biol; 2009 Nov; 71(8):1902-13. PubMed ID: 19475454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling spatial spread of infectious diseases with a fixed latent period in a spatially continuous domain.
    Li J; Zou X
    Bull Math Biol; 2009 Nov; 71(8):2048-79. PubMed ID: 19787405
    [No Abstract]   [Full Text] [Related]  

  • 13. Deterministic epidemic models with explicit household structure.
    House T; Keeling MJ
    Math Biosci; 2008 May; 213(1):29-39. PubMed ID: 18374370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mathematical model for indirectly transmitted diseases.
    Fitzgibbon WE; Langlais M; Morgan JJ
    Math Biosci; 2007 Apr; 206(2):233-48. PubMed ID: 16216284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fully coupled, mechanistic model for infectious disease dynamics in a metapopulation: movement and epidemic duration.
    Jesse M; Ezanno P; Davis S; Heesterbeek JA
    J Theor Biol; 2008 Sep; 254(2):331-8. PubMed ID: 18577388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of a stochastic SIR epidemic on a random network incorporating household structure.
    Ball F; Sirl D; Trapman P
    Math Biosci; 2010 Apr; 224(2):53-73. PubMed ID: 20005881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Some model based considerations on observing generation times for communicable diseases.
    Scalia Tomba G; Svensson A; Asikainen T; Giesecke J
    Math Biosci; 2010 Jan; 223(1):24-31. PubMed ID: 19854206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Network epidemic models with two levels of mixing.
    Ball F; Neal P
    Math Biosci; 2008 Mar; 212(1):69-87. PubMed ID: 18280521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limits of a multi-patch SIS epidemic model.
    Arrigoni F; Pugliese A
    J Math Biol; 2002 Nov; 45(5):419-40. PubMed ID: 12424531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of an SIS reaction-diffusion epidemic model for disease transmission.
    Huang W; Han M; Liu K
    Math Biosci Eng; 2010 Jan; 7(1):51-66. PubMed ID: 20104948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.