These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 16796560)

  • 1. Development, validation, and applications of anisotropic polarizable molecular mechanics to study ligand and drug-receptor interactions.
    Gresh N
    Curr Pharm Des; 2006; 12(17):2121-58. PubMed ID: 16796560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calibration of 1,2,4-Triazole-3-Thione, an Original Zn-Binding Group of Metallo-β-Lactamase Inhibitors. Validation of a Polarizable MM/MD Potential by Quantum Chemistry.
    Kwapien K; Damergi M; Nader S; El Khoury L; Hobaika Z; Maroun RG; Piquemal JP; Gavara L; Berthomieu D; Hernandez JF; Gresh N
    J Phys Chem B; 2017 Jul; 121(26):6295-6312. PubMed ID: 28574718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complexes of thiomandelate and captopril mercaptocarboxylate inhibitors to metallo-beta-lactamase by polarizable molecular mechanics. Validation on model binding sites by quantum chemistry.
    Antony J; Piquemal JP; Gresh N
    J Comput Chem; 2005 Aug; 26(11):1131-47. PubMed ID: 15937993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformation-dependent intermolecular interaction energies of the triphosphate anion with divalent metal cations. Application to the ATP-binding site of a binuclear bacterial enzyme. A parallel quantum chemical and polarizable molecular mechanics investigation.
    Gresh N; Shi GB
    J Comput Chem; 2004 Jan; 25(2):160-8. PubMed ID: 14648615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding of D- and L-captopril inhibitors to metallo-beta-lactamase studied by polarizable molecular mechanics and quantum mechanics.
    Antony J; Gresh N; Olsen L; Hemmingsen L; Schofield CJ; Bauer R
    J Comput Chem; 2002 Oct; 23(13):1281-96. PubMed ID: 12210153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Representation of Zn(II) complexes in polarizable molecular mechanics. Further refinements of the electrostatic and short-range contributions. Comparisons with parallel ab initio computations.
    Gresh N; Piquemal JP; Krauss M
    J Comput Chem; 2005 Aug; 26(11):1113-30. PubMed ID: 15934064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intermolecular interactions of the extended recognition site of VIM-2 metallo-β-lactamase with 1,2,4-triazole-3-thione inhibitors. Validations of a polarizable molecular mechanics potential by ab initio QC.
    Kwapien K; Gavara L; Docquier JD; Berthomieu D; Hernandez JF; Gresh N
    J Comput Chem; 2021 Jan; 42(2):86-106. PubMed ID: 33169865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropic, Polarizable Molecular Mechanics Studies of Inter- and Intramolecular Interactions and Ligand-Macromolecule Complexes. A Bottom-Up Strategy.
    Gresh N; Cisneros GA; Darden TA; Piquemal JP
    J Chem Theory Comput; 2007 Nov; 3(6):1960-1986. PubMed ID: 18978934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarizable molecular mechanics studies of Cu(I)/Zn(II) superoxide dismutase: bimetallic binding site and structured waters.
    Gresh N; El Hage K; Perahia D; Piquemal JP; Berthomieu C; Berthomieu D
    J Comput Chem; 2014 Nov; 35(29):2096-106. PubMed ID: 25212748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complexes of a Zn-metalloenzyme binding site with hydroxamate-containing ligands. A case for detailed benchmarkings of polarizable molecular mechanics/dynamics potentials when the experimental binding structure is unknown.
    Gresh N; Perahia D; de Courcy B; Foret J; Roux C; El-Khoury L; Piquemal JP; Salmon L
    J Comput Chem; 2016 Dec; 37(32):2770-2782. PubMed ID: 27699809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. S/G-1: an ab initio force-field blending frozen Hermite Gaussian densities and distributed multipoles. Proof of concept and first applications to metal cations.
    Chaudret R; Gresh N; Narth C; Lagardère L; Darden TA; Cisneros GA; Piquemal JP
    J Phys Chem A; 2014 Sep; 118(35):7598-612. PubMed ID: 24878003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarizable water networks in ligand-metalloprotein recognition. Impact on the relative complexation energies of Zn-dependent phosphomannose isomerase with D-mannose 6-phosphate surrogates.
    Gresh N; de Courcy B; Piquemal JP; Foret J; Courtiol-Legourd S; Salmon L
    J Phys Chem B; 2011 Jun; 115(25):8304-16. PubMed ID: 21650197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multimolecular complexes of the phosphodiester anion with Zn(II) or Mg(II) and water molecules-Preliminary validations of a polarizable potential by ab initio quantum chemistry.
    Gresh N; Perahia D
    J Comput Chem; 2021 Jul; 42(20):1430-1446. PubMed ID: 34101861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of inhibitor-metalloenzyme interactions and selectivity using molecular mechanics grounded in quantum chemistry.
    Garmer DR; Gresh N; Roques BP
    Proteins; 1998 Apr; 31(1):42-60. PubMed ID: 9552158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: conformationally flexible docking by evolutionary programming.
    Gehlhaar DK; Verkhivker GM; Rejto PA; Sherman CJ; Fogel DB; Fogel LJ; Freer ST
    Chem Biol; 1995 May; 2(5):317-24. PubMed ID: 9383433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Could an anisotropic molecular mechanics/dynamics potential account for sigma hole effects in the complexes of halogenated compounds?
    El Hage K; Piquemal JP; Hobaika Z; Maroun RG; Gresh N
    J Comput Chem; 2013 May; 34(13):1125-35. PubMed ID: 23386428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding of 5-phospho-D-arabinonohydroxamate and 5-phospho-D-arabinonate inhibitors to zinc phosphomannose isomerase from Candida albicans studied by polarizable molecular mechanics and quantum mechanics.
    Roux C; Gresh N; Perera LE; Piquemal JP; Salmon L
    J Comput Chem; 2007 Apr; 28(5):938-57. PubMed ID: 17253648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the interactions taking place in the recognition site of a bimetallic Mg(II)-Zn(II) enzyme, isopentenyl diphosphate isomerase. a parallel quantum-chemical and polarizable molecular mechanics study.
    Gresh N; Audiffren N; Piquemal JP; de Ruyck J; Ledecq M; Wouters J
    J Phys Chem B; 2010 Apr; 114(14):4884-95. PubMed ID: 20329783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction Energies in Complexes of Zn and Amino Acids: A Comparison of Ab Initio and Force Field Based Calculations.
    Ahlstrand E; Hermansson K; Friedman R
    J Phys Chem A; 2017 Apr; 121(13):2643-2654. PubMed ID: 28272891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QXP: powerful, rapid computer algorithms for structure-based drug design.
    McMartin C; Bohacek RS
    J Comput Aided Mol Des; 1997 Jul; 11(4):333-44. PubMed ID: 9334900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.