These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 16796571)

  • 61. Surface-to-air signals.
    Farmer EE
    Nature; 2001 Jun; 411(6839):854-6. PubMed ID: 11459069
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Phylogenetic and experimental tests of interactions among mutualistic plant defense traits in Viburnum (adoxaceae).
    Weber MG; Clement WL; Donoghue MJ; Agrawal AA
    Am Nat; 2012 Oct; 180(4):450-63. PubMed ID: 22976009
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effects of light on direct and indirect defences against herbivores of young plants of Mallotus japonicus demonstrate a trade-off between two indirect defence traits.
    Yamawo A; Hada Y
    Ann Bot; 2010 Jul; 106(1):143-8. PubMed ID: 20472698
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Global change effects on plant chemical defenses against insect herbivores.
    Bidart-Bouzat MG; Imeh-Nathaniel A
    J Integr Plant Biol; 2008 Nov; 50(11):1339-54. PubMed ID: 19017122
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Multiple functions of inducible plant volatiles.
    Holopainen JK
    Trends Plant Sci; 2004 Nov; 9(11):529-33. PubMed ID: 15501177
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Specificity of herbivore-induced plant defences.
    Dicke M
    Novartis Found Symp; 1999; 223():43-54; discussion 54-9, 160-5. PubMed ID: 10549547
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Harnessing endophytes for industrial microbiology.
    Strobel G
    Curr Opin Microbiol; 2006 Jun; 9(3):240-4. PubMed ID: 16647289
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Plants on red alert: do insects pay attention?
    Schaefer HM; Rolshausen G
    Bioessays; 2006 Jan; 28(1):65-71. PubMed ID: 16369938
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Soil salinization disrupts plant-plant signaling effects on extra-floral nectar induction in wild cotton.
    Briones-May Y; Quijano-Medina T; Pérez-Niño B; Benrey B; Turlings TCJ; Bustos-Segura C; Abdala-Roberts L
    Oecologia; 2023 Jun; 202(2):313-323. PubMed ID: 37278768
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Within-plant distribution of phenolic glycosides and extrafloral nectaries in trembling aspen (Populus tremuloides; Salicaceae).
    Young B; Wagner D; Doak P; Clausen T
    Am J Bot; 2010 Apr; 97(4):601-10. PubMed ID: 21622422
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Ecological effects of salicin at three trophic levels: new problems from old adaptations.
    Smiley JT; Horn JM; Rank NE
    Science; 1985 Aug; 229(4714):649-51. PubMed ID: 17739376
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Quantity over quality: light intensity, but not red/far-red ratio, affects extrafloral nectar production in Senna mexicana var. chapmanii.
    Jones IM; Koptur S
    Ecol Evol; 2015 Sep; 5(18):4108-14. PubMed ID: 26445662
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Pathogenesis-related proteins protect extrafloral nectar from microbial infestation.
    González-Teuber M; Eilmus S; Muck A; Svatos A; Heil M
    Plant J; 2009 May; 58(3):464-73. PubMed ID: 19143997
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Herbivore-specific induction of indirect and direct defensive responses in leaves and roots.
    Xiao L; Carrillo J; Siemann E; Ding J
    AoB Plants; 2019 Feb; 11(1):plz003. PubMed ID: 30792834
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Co-variation of chemical and mechanical defenses in lima bean (Phaseolus lunatus L.).
    Ballhorn DJ; Godschalx AL; Kautz S
    J Chem Ecol; 2013 Mar; 39(3):413-7. PubMed ID: 23417653
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Priming by Insects: Differential Effects of Sympatric and Allopatric Priming upon Plant Performance and Tolerance to Herbivory.
    Garrido E; Boege K; Domínguez CA; Fornoni J
    Plants (Basel); 2022 Dec; 11(24):. PubMed ID: 36559679
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Trade-offs among anti-herbivore resistance traits: insights from Gossypieae (Malvaceae).
    Rudgers JA; Strauss SY; Wendel JF
    Am J Bot; 2004 Jun; 91(6):871-80. PubMed ID: 21653443
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Short signalling distances make plant communication a soliloquy.
    Heil M; Adame-Álvarez RM
    Biol Lett; 2010 Dec; 6(6):843-5. PubMed ID: 20554558
    [TBL] [Abstract][Full Text] [Related]  

  • 79. An air transfer experiment confirms the role of volatile cues in communication between plants.
    Karban R; Shiojiri K; Ishizaki S
    Am Nat; 2010 Sep; 176(3):381-4. PubMed ID: 20635861
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Chemicals on plant surfaces as a heretofore unrecognized, but ecologically informative, class for investigations into plant defence.
    LoPresti EF
    Biol Rev Camb Philos Soc; 2016 Nov; 91(4):1102-1117. PubMed ID: 26280356
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.