These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 16797013)

  • 1. Impact of intra-subunit domain-domain interactions on creatine kinase activity and stability.
    Zhao TJ; Feng S; Wang YL; Liu Y; Luo XC; Zhou HM; Yan YB
    FEBS Lett; 2006 Jul; 580(16):3835-40. PubMed ID: 16797013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the linker between the N- and C-terminal domains in the stability and folding of rabbit muscle creatine kinase.
    He HW; Feng S; Pang M; Zhou HM; Yan YB
    Int J Biochem Cell Biol; 2007; 39(10):1816-27. PubMed ID: 17616428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of intra-subunit interactions on the dimeric arginine kinase activity and structural stability.
    Wu QY; Jin KZ; Li F; Hu ZQ; Wang XY
    Int J Biol Macromol; 2011 Nov; 49(4):822-31. PubMed ID: 21839768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of the single point genetic mutation D54G on muscle creatine kinase activity, structure and stability.
    Feng S; Zhao TJ; Zhou HM; Yan YB
    Int J Biochem Cell Biol; 2007; 39(2):392-401. PubMed ID: 17030001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Despite its high similarity with monomeric arginine kinase, muscle creatine kinase is only enzymatically active as a dimer.
    Awama AM; Mazon H; Vial C; Marcillat O
    Arch Biochem Biophys; 2007 Feb; 458(2):158-66. PubMed ID: 17239811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on the stability of creatine kinase isozymes.
    Guo Z; Wang Z; Wang X
    Biochem Cell Biol; 2003 Feb; 81(1):9-16. PubMed ID: 12683631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity and function of rabbit muscle-specific creatine kinase at low temperature by mutation at gly268 to asn268.
    Wu CL; Li YH; Lin HC; Yeh YH; Yan HY; Hsiao CD; Hui CF; Wu JL
    Comp Biochem Physiol B Biochem Mol Biol; 2011 Mar; 158(3):189-98. PubMed ID: 21130895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disrupting of E79 and K138 interaction is responsible for human muscle creatine kinase deficiency diseases.
    Wu QY; Li F; Guo HY; Cao J; Chen C; Chen W; Zeng LY; Li ZY; Wang XY; Xu KL
    Int J Biol Macromol; 2013 Mar; 54():216-24. PubMed ID: 23274523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards creatine kinase aggregation due to the cysteine modification at the flexible active site and refolding pathway.
    Mu H; Zhou SM; Yang JM; Meng FG; Park YD
    Int J Biol Macromol; 2007 Oct; 41(4):439-46. PubMed ID: 17673285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that the amino acid residue Ile121 is involved in arginine kinase activity and structural stability.
    Wu QY; Li F; Wang XY; Xu KL
    Int J Biol Macromol; 2012 Nov; 51(4):369-77. PubMed ID: 22643639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissecting the key residues crucial for the species-specific thermostability of muscle-type creatine kinase.
    Gao YS; Wang Y; Li C; Chen Z; Yan YB; Zhou HM
    Int J Biol Macromol; 2010 Oct; 47(3):366-70. PubMed ID: 20558199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutation of the conserved Asp122 in the linker impedes creatine kinase reactivation and refolding.
    Liu YM; Feng S; Ding XL; Kang CF; Yan YB
    Int J Biol Macromol; 2009 Apr; 44(3):271-7. PubMed ID: 19263506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of glycerol on the compaction and stability of the wild type and mutated rabbit muscle creatine kinase.
    Feng S; Yan YB
    Proteins; 2008 May; 71(2):844-54. PubMed ID: 18004763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of lactic acid and NaCl on creatine kinase from rabbit muscle.
    Tang HM; Ou WB; Zhou HM
    Biochem Cell Biol; 2003 Feb; 81(1):1-7. PubMed ID: 12683630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folding studies on muscle type of creatine kinase from Pelodiscus sinensis.
    Wang SF; Si YX; Wang ZJ; Yin SJ; Yang JM; Qian GY
    Int J Biol Macromol; 2012 May; 50(4):981-90. PubMed ID: 22405779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endogenous tryptophan residues of cAPK regulatory subunit type IIbeta reveal local variations in environments and dynamics.
    Zawadzki KM; Pan CP; Barkley MD; Johnson D; Taylor SS
    Proteins; 2003 Jun; 51(4):552-61. PubMed ID: 12784214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The location of an engineered inter-subunit disulfide bond in factor for inversion stimulation (FIS) affects the denaturation pathway and cooperativity.
    Meinhold D; Beach M; Shao Y; Osuna R; Colón W
    Biochemistry; 2006 Aug; 45(32):9767-77. PubMed ID: 16893178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent-exposed residues located in the beta-sheet modulate the stability of the tetramerization domain of p53--a structural and combinatorial approach.
    Mora P; Carbajo RJ; Pineda-Lucena A; Sánchez del Pino MM; Pérez-Payá E
    Proteins; 2008 Jun; 71(4):1670-85. PubMed ID: 18076077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural asymmetry and intersubunit communication in muscle creatine kinase.
    Ohren JF; Kundracik ML; Borders CL; Edmiston P; Viola RE
    Acta Crystallogr D Biol Crystallogr; 2007 Mar; 63(Pt 3):381-9. PubMed ID: 17327675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Cys-295 on subunit interactions and allosteric regulation of phosphofructokinase-2 from Escherichia coli.
    Caniuguir A; Cabrera R; Báez M; Vásquez CC; Babul J; Guixé V
    FEBS Lett; 2005 Apr; 579(11):2313-8. PubMed ID: 15848164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.