BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 16797020)

  • 1. A volumetric model for growth of arterial walls with arbitrary geometry and loads.
    Rodríguez J; Goicolea JM; Gabaldón F
    J Biomech; 2007; 40(5):961-71. PubMed ID: 16797020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling adaptative volumetric finite growth in patient-specific residually stressed arteries.
    Alastrué V; Martínez MA; Doblaré M
    J Biomech; 2008; 41(8):1773-81. PubMed ID: 18433759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stress-driven collagen fiber remodeling in arterial walls.
    Hariton I; de Botton G; Gasser TC; Holzapfel GA
    Biomech Model Mechanobiol; 2007 Apr; 6(3):163-75. PubMed ID: 16912884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiphysics simulation of blood flow and LDL transport in a porohyperelastic arterial wall model.
    Koshiba N; Ando J; Chen X; Hisada T
    J Biomech Eng; 2007 Jun; 129(3):374-85. PubMed ID: 17536904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of reproducibility of human arterial plaque reconstruction and its effects on stress analysis based on multispectral in vivo magnetic resonance imaging.
    Gao H; Long Q; Graves M; Gillard JH; Li ZY
    J Magn Reson Imaging; 2009 Jul; 30(1):85-93. PubMed ID: 19557850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A finite element model of the human left ventricular systole.
    Dorri F; Niederer PF; Lunkenheimer PP
    Comput Methods Biomech Biomed Engin; 2006 Oct; 9(5):319-41. PubMed ID: 17132618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of arterial wall-stenosis compliance on the coronary diagnostic parameters.
    Konala BC; Das A; Banerjee RK
    J Biomech; 2011 Mar; 44(5):842-7. PubMed ID: 21215971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical modelling of fracture in human arteries.
    Ferrara A; Pandolfi A
    Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):553-67. PubMed ID: 19230149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study on the compliance of a right coronary artery and its impact on wall shear stress.
    Zeng D; Boutsianis E; Ammann M; Boomsma K; Wildermuth S; Poulikakos D
    J Biomech Eng; 2008 Aug; 130(4):041014. PubMed ID: 18601456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new three-dimensional exponential material model of the coronary arterial wall to include shear stress due to torsion.
    Van Epps JS; Vorp DA
    J Biomech Eng; 2008 Oct; 130(5):051001. PubMed ID: 19045508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A boundary layer model for wall shear stress in arterial stenosis.
    Provenzano PP; Rutland CJ
    Biorheology; 2002; 39(6):743-54. PubMed ID: 12454440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Newtonian and non-Newtonian flows in a two-dimensional carotid artery model using the lattice Boltzmann method.
    Boyd J; Buick JM
    Phys Med Biol; 2007 Oct; 52(20):6215-28. PubMed ID: 17921581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of fibre architecture and adaptation in diseased carotid bifurcations.
    Creane A; Maher E; Sultan S; Hynes N; Kelly DJ; Lally C
    Biomech Model Mechanobiol; 2011 Dec; 10(6):831-43. PubMed ID: 21161562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational stress-deformation analysis of arterial walls including high-pressure response.
    Holzapfel GA; Gasser TC
    Int J Cardiol; 2007 Mar; 116(1):78-85. PubMed ID: 16822562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear anisotropic stress analysis of anatomically realistic cerebral aneurysms.
    Ma B; Lu J; Harbaugh RE; Raghavan ML
    J Biomech Eng; 2007 Feb; 129(1):88-96. PubMed ID: 17227102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional modelling of the human carotid artery using the lattice Boltzmann method: I. model and velocity analysis.
    Boyd J; Buick JM
    Phys Med Biol; 2008 Oct; 53(20):5767-79. PubMed ID: 18824786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-invasive determination of zero-pressure geometry of arterial aneurysms.
    Raghavan ML; Ma B; Fillinger MF
    Ann Biomed Eng; 2006 Sep; 34(9):1414-9. PubMed ID: 16838128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mesh development for a finite element model of the carotid artery.
    Gayzik FS; Tan JC; Duma SM; Stitzel JD
    Biomed Sci Instrum; 2006; 42():187-92. PubMed ID: 16817606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vascular cell adhesion molecule-1 expression in endothelial cells exposed to physiological coronary wall shear stresses.
    O'Keeffe LM; Muir G; Piterina AV; McGloughlin T
    J Biomech Eng; 2009 Aug; 131(8):081003. PubMed ID: 19604015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.