BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 16797036)

  • 1. A new approach to the determination of cardiac potential distributions: application to the analysis of electrode configurations.
    Johnston BM; Johnston PR; Kilpatrick D
    Math Biosci; 2006 Aug; 202(2):288-309. PubMed ID: 16797036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A solution method for the determination of cardiac potential distributions with an alternating current source.
    Johnston BM; Johnston PR; Kilpatrick D
    Comput Methods Biomech Biomed Engin; 2008 Jun; 11(3):223-33. PubMed ID: 18568820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Possible four-electrode configurations for measuring cardiac tissue fiber rotation.
    Johnston BM; Johnston PR
    IEEE Trans Biomed Eng; 2007 Mar; 54(3):547-50. PubMed ID: 17355070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of electrode configurations for measuring cardiac tissue conductivities and fibre rotation.
    Johnston BM; Johnston PR; Kilpatrick D
    Ann Biomed Eng; 2006 Jun; 34(6):986-96. PubMed ID: 16783654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of conductivity values on ST segment shift in subendocardial ischaemia.
    Johnston PR; Kilpatrick D
    IEEE Trans Biomed Eng; 2003 Feb; 50(2):150-8. PubMed ID: 12665028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element analysis of cardiac defibrillation current distributions.
    Sepulveda NG; Wikswo JP; Echt DS
    IEEE Trans Biomed Eng; 1990 Apr; 37(4):354-65. PubMed ID: 2338348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction and validation of a plunge electrode array for three-dimensional determination of conductivity in the heart.
    Hooks DA; Trew ML
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):626-35. PubMed ID: 18269998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of spectral methods in bidomain studies.
    Trayanova N; Pilkington T
    Crit Rev Biomed Eng; 1992; 20(3-4):255-77. PubMed ID: 1478093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A bidomain model with periodic intracellular junctions: a one-dimensional analysis.
    Trayanova N; Pilkington TC
    IEEE Trans Biomed Eng; 1993 May; 40(5):424-33. PubMed ID: 8225331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational modelling of blood-flow-induced changes in blood electrical conductivity and its contribution to the impedance cardiogram.
    Trakic A; Akhand M; Wang H; Mason D; Liu F; Wilson S; Crozier S
    Physiol Meas; 2010 Jan; 31(1):13-33. PubMed ID: 19940342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A finite volume method solution for the bidomain equations and their application to modelling cardiac ischaemia.
    Johnston PR
    Comput Methods Biomech Biomed Engin; 2010; 13(2):157-70. PubMed ID: 19639486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calibrated single-plunge bipolar electrode array for mapping myocardial vector fields in three dimensions during high-voltage transthoracic defibrillation.
    Deale OC; Ng KT; Kim-Van Housen EJ; Lerman BB
    IEEE Trans Biomed Eng; 2001 Aug; 48(8):898-910. PubMed ID: 11499527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of cardiac defibrillation by three-dimensional finite element modeling of the human thorax.
    Panescu D; Webster JG; Tompkins WJ; Stratbucker RA
    IEEE Trans Biomed Eng; 1995 Feb; 42(2):185-92. PubMed ID: 7868146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of array of finite electrodes with layered biological tissue: effect of electrode size and configuration.
    Livshitz LM; Mizrahi J; Einziger PD
    IEEE Trans Neural Syst Rehabil Eng; 2001 Dec; 9(4):355-61. PubMed ID: 12018648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How electrode size affects the electric potential distribution in cardiac tissue.
    Patel SG; Roth BJ
    IEEE Trans Biomed Eng; 2000 Sep; 47(9):1284-7. PubMed ID: 11008431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane polarization induced in the myocardium by defibrillation fields: an idealized 3-D finite element bidomain/monodomain torso model.
    Huang Q; Eason JC; Claydon FJ
    IEEE Trans Biomed Eng; 1999 Jan; 46(1):26-34. PubMed ID: 9919823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An integral equation model for intracardiac electrogram sensing.
    Sun W; Min X
    IEEE Trans Biomed Eng; 1997 Dec; 44(12):1237-42. PubMed ID: 9401223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of simplifying assumptions in the bidomain model of cardiac tissue: application to ST segment shifts during partial ischaemia.
    Johnston PR
    Math Biosci; 2005 Nov; 198(1):97-118. PubMed ID: 16061262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of the bidomain conductivity parameters of cardiac tissue from extracellular potential distributions initiated by point stimulation.
    Graham LS; Kilpatrick D
    Ann Biomed Eng; 2010 Dec; 38(12):3630-48. PubMed ID: 20628818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of plunge electrodes during electrical stimulation of cardiac tissue.
    Langrill DM; Roth BJ
    IEEE Trans Biomed Eng; 2001 Oct; 48(10):1207-11. PubMed ID: 11585046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.