These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 16797036)
1. A new approach to the determination of cardiac potential distributions: application to the analysis of electrode configurations. Johnston BM; Johnston PR; Kilpatrick D Math Biosci; 2006 Aug; 202(2):288-309. PubMed ID: 16797036 [TBL] [Abstract][Full Text] [Related]
2. A solution method for the determination of cardiac potential distributions with an alternating current source. Johnston BM; Johnston PR; Kilpatrick D Comput Methods Biomech Biomed Engin; 2008 Jun; 11(3):223-33. PubMed ID: 18568820 [TBL] [Abstract][Full Text] [Related]
3. Possible four-electrode configurations for measuring cardiac tissue fiber rotation. Johnston BM; Johnston PR IEEE Trans Biomed Eng; 2007 Mar; 54(3):547-50. PubMed ID: 17355070 [TBL] [Abstract][Full Text] [Related]
4. Analysis of electrode configurations for measuring cardiac tissue conductivities and fibre rotation. Johnston BM; Johnston PR; Kilpatrick D Ann Biomed Eng; 2006 Jun; 34(6):986-96. PubMed ID: 16783654 [TBL] [Abstract][Full Text] [Related]
5. The effect of conductivity values on ST segment shift in subendocardial ischaemia. Johnston PR; Kilpatrick D IEEE Trans Biomed Eng; 2003 Feb; 50(2):150-8. PubMed ID: 12665028 [TBL] [Abstract][Full Text] [Related]
6. Finite element analysis of cardiac defibrillation current distributions. Sepulveda NG; Wikswo JP; Echt DS IEEE Trans Biomed Eng; 1990 Apr; 37(4):354-65. PubMed ID: 2338348 [TBL] [Abstract][Full Text] [Related]
7. Construction and validation of a plunge electrode array for three-dimensional determination of conductivity in the heart. Hooks DA; Trew ML IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):626-35. PubMed ID: 18269998 [TBL] [Abstract][Full Text] [Related]
8. The use of spectral methods in bidomain studies. Trayanova N; Pilkington T Crit Rev Biomed Eng; 1992; 20(3-4):255-77. PubMed ID: 1478093 [TBL] [Abstract][Full Text] [Related]
9. A bidomain model with periodic intracellular junctions: a one-dimensional analysis. Trayanova N; Pilkington TC IEEE Trans Biomed Eng; 1993 May; 40(5):424-33. PubMed ID: 8225331 [TBL] [Abstract][Full Text] [Related]
10. Computational modelling of blood-flow-induced changes in blood electrical conductivity and its contribution to the impedance cardiogram. Trakic A; Akhand M; Wang H; Mason D; Liu F; Wilson S; Crozier S Physiol Meas; 2010 Jan; 31(1):13-33. PubMed ID: 19940342 [TBL] [Abstract][Full Text] [Related]
11. A finite volume method solution for the bidomain equations and their application to modelling cardiac ischaemia. Johnston PR Comput Methods Biomech Biomed Engin; 2010; 13(2):157-70. PubMed ID: 19639486 [TBL] [Abstract][Full Text] [Related]
12. Calibrated single-plunge bipolar electrode array for mapping myocardial vector fields in three dimensions during high-voltage transthoracic defibrillation. Deale OC; Ng KT; Kim-Van Housen EJ; Lerman BB IEEE Trans Biomed Eng; 2001 Aug; 48(8):898-910. PubMed ID: 11499527 [TBL] [Abstract][Full Text] [Related]
13. Optimization of cardiac defibrillation by three-dimensional finite element modeling of the human thorax. Panescu D; Webster JG; Tompkins WJ; Stratbucker RA IEEE Trans Biomed Eng; 1995 Feb; 42(2):185-92. PubMed ID: 7868146 [TBL] [Abstract][Full Text] [Related]
14. Interaction of array of finite electrodes with layered biological tissue: effect of electrode size and configuration. Livshitz LM; Mizrahi J; Einziger PD IEEE Trans Neural Syst Rehabil Eng; 2001 Dec; 9(4):355-61. PubMed ID: 12018648 [TBL] [Abstract][Full Text] [Related]
15. How electrode size affects the electric potential distribution in cardiac tissue. Patel SG; Roth BJ IEEE Trans Biomed Eng; 2000 Sep; 47(9):1284-7. PubMed ID: 11008431 [TBL] [Abstract][Full Text] [Related]
16. Membrane polarization induced in the myocardium by defibrillation fields: an idealized 3-D finite element bidomain/monodomain torso model. Huang Q; Eason JC; Claydon FJ IEEE Trans Biomed Eng; 1999 Jan; 46(1):26-34. PubMed ID: 9919823 [TBL] [Abstract][Full Text] [Related]
17. An integral equation model for intracardiac electrogram sensing. Sun W; Min X IEEE Trans Biomed Eng; 1997 Dec; 44(12):1237-42. PubMed ID: 9401223 [TBL] [Abstract][Full Text] [Related]
18. The effect of simplifying assumptions in the bidomain model of cardiac tissue: application to ST segment shifts during partial ischaemia. Johnston PR Math Biosci; 2005 Nov; 198(1):97-118. PubMed ID: 16061262 [TBL] [Abstract][Full Text] [Related]
19. Estimation of the bidomain conductivity parameters of cardiac tissue from extracellular potential distributions initiated by point stimulation. Graham LS; Kilpatrick D Ann Biomed Eng; 2010 Dec; 38(12):3630-48. PubMed ID: 20628818 [TBL] [Abstract][Full Text] [Related]
20. The effect of plunge electrodes during electrical stimulation of cardiac tissue. Langrill DM; Roth BJ IEEE Trans Biomed Eng; 2001 Oct; 48(10):1207-11. PubMed ID: 11585046 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]