These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 16797043)
1. Competition between plasmid-bearing and plasmid-free organisms in a chemostat with nutrient recycling and an inhibitor. Yuan S; Xiao D; Han M Math Biosci; 2006 Jul; 202(1):1-28. PubMed ID: 16797043 [TBL] [Abstract][Full Text] [Related]
2. Model of plasmid-bearing, plasmid-free competition in the chemostat with nutrient recycling and an inhibitor. Lu Z; Hadeler KP Math Biosci; 1998 Mar; 148(2):147-59. PubMed ID: 9610104 [TBL] [Abstract][Full Text] [Related]
3. Competition in chemostat-type equations with two habitats. Nakaoka S; Takeuchi Y Math Biosci; 2006 May; 201(1-2):157-71. PubMed ID: 16448673 [TBL] [Abstract][Full Text] [Related]
4. Plasmid-bearing, plasmid-free organisms competing for two complementary nutrients in a chemostat. Hsu SB; Tzeng YH Math Biosci; 2002; 179(2):183-206. PubMed ID: 12208615 [TBL] [Abstract][Full Text] [Related]
5. Periodic solutions in a model of competition between plasmid-bearing and plasmid-free organisms in a chemostat with an inhibitor. Ai S J Math Biol; 2001 Jan; 42(1):71-94. PubMed ID: 11271509 [TBL] [Abstract][Full Text] [Related]
6. Allelopathy of plasmid-bearing and plasmid-free organisms competing for two complementary resources in a chemostat. Bhattacharyya J; Smith HL; Pal S J Biol Dyn; 2012; 6():628-44. PubMed ID: 22873609 [TBL] [Abstract][Full Text] [Related]
8. A periodic Droop model for two species competition in a chemostat. White MC; Zhao XQ Bull Math Biol; 2009 Jan; 71(1):145-61. PubMed ID: 18825462 [TBL] [Abstract][Full Text] [Related]
9. Competition between plasmid-bearing and plasmid-free organisms in the host: population dynamics and antibiotic resistance. Song HX; Peng YY; Zhu ZF Med Princ Pract; 2006; 15(6):436-42. PubMed ID: 17047351 [TBL] [Abstract][Full Text] [Related]
10. The analysis and regulation for the dynamics of a temperate bacteriophage model. Qiu Z Math Biosci; 2007 Oct; 209(2):417-50. PubMed ID: 17445836 [TBL] [Abstract][Full Text] [Related]
11. Delayed feedback control for a chemostat model. Tagashira O; Hara T Math Biosci; 2006 May; 201(1-2):101-12. PubMed ID: 16472826 [TBL] [Abstract][Full Text] [Related]
12. Limit cycles in a chemostat model for a single species with age structure. Toth D; Kot M Math Biosci; 2006 Jul; 202(1):194-217. PubMed ID: 16624336 [TBL] [Abstract][Full Text] [Related]
13. Predicting stability of mixed microbial cultures from single species experiments: 2. Physiological model. Pilyugin SS; Reeves GT; Narang A Math Biosci; 2004 Dec; 192(2):111-36. PubMed ID: 15627489 [TBL] [Abstract][Full Text] [Related]
14. Stability in chemostat equations with delayed nutrient recycling. Beretta E; Bischi GI; Solimano F J Math Biol; 1990; 28(1):99-111. PubMed ID: 2307915 [TBL] [Abstract][Full Text] [Related]
15. Long-term dynamics of catabolic plasmids introduced to a microbial community in a polluted environment: a mathematical model. Miki T; Ueki M; Kawabata Z; Yamamura N FEMS Microbiol Ecol; 2007 Nov; 62(2):211-21. PubMed ID: 17627781 [TBL] [Abstract][Full Text] [Related]
16. Biofilms and the plasmid maintenance question. Imran M; Jones D; Smith H Math Biosci; 2005 Feb; 193(2):183-204. PubMed ID: 15748729 [TBL] [Abstract][Full Text] [Related]
17. Time delay in simple chemostat models. MacDonald N Biotechnol Bioeng; 1976 Jun; 18(6):805-12. PubMed ID: 1268333 [TBL] [Abstract][Full Text] [Related]
18. Continuous recombinant bacterial fermentations utilizing selective flocculation and recycle. Henry KL; Davis RH; Taylor AL Biotechnol Prog; 1990; 6(1):7-12. PubMed ID: 1366518 [TBL] [Abstract][Full Text] [Related]
19. Airlift-driven fibrous-bed bioreactor for continuous production of glucoamylase using immobilized recombinant yeast cells. Kilonzo P; Margaritis A; Bergougnou M J Biotechnol; 2009 Aug; 143(1):60-8. PubMed ID: 19539672 [TBL] [Abstract][Full Text] [Related]
20. Non-periodicity in chemostat equations: a multi-dimensional negative Bendixson-Dulac criterion. Fiedler B; Hsu SB J Math Biol; 2009 Aug; 59(2):233-53. PubMed ID: 18956192 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]