BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 16797197)

  • 1. General and specific functions of exonic splicing silencers in splicing control.
    Wang Z; Xiao X; Van Nostrand E; Burge CB
    Mol Cell; 2006 Jul; 23(1):61-70. PubMed ID: 16797197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic identification and analysis of exonic splicing silencers.
    Wang Z; Rolish ME; Yeo G; Tung V; Mawson M; Burge CB
    Cell; 2004 Dec; 119(6):831-45. PubMed ID: 15607979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global control of aberrant splice-site activation by auxiliary splicing sequences: evidence for a gradient in exon and intron definition.
    Královicová J; Vorechovsky I
    Nucleic Acids Res; 2007; 35(19):6399-413. PubMed ID: 17881373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The strength of the HIV-1 3' splice sites affects Rev function.
    Kammler S; Otte M; Hauber I; Kjems J; Hauber J; Schaal H
    Retrovirology; 2006 Dec; 3():89. PubMed ID: 17144911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Why Selection Might Be Stronger When Populations Are Small: Intron Size and Density Predict within and between-Species Usage of Exonic Splice Associated cis-Motifs.
    Wu X; Hurst LD
    Mol Biol Evol; 2015 Jul; 32(7):1847-61. PubMed ID: 25771198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA splicing at human immunodeficiency virus type 1 3' splice site A2 is regulated by binding of hnRNP A/B proteins to an exonic splicing silencer element.
    Bilodeau PS; Domsic JK; Mayeda A; Krainer AR; Stoltzfus CM
    J Virol; 2001 Sep; 75(18):8487-97. PubMed ID: 11507194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compensatory relationship between splice sites and exonic splicing signals depending on the length of vertebrate introns.
    Dewey CN; Rogozin IB; Koonin EV
    BMC Genomics; 2006 Dec; 7():311. PubMed ID: 17156453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The second RNA-binding domain of the human splicing factor ASF/SF2 is the critical domain controlling adenovirus E1A alternative 5'-splice site selection.
    Dauksaite V; Akusjärvi G
    Biochem J; 2004 Jul; 381(Pt 2):343-50. PubMed ID: 15068396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of 3' splice site choice in vivo by ASF/SF2 and hnRNP A1.
    Bai Y; Lee D; Yu T; Chasin LA
    Nucleic Acids Res; 1999 Feb; 27(4):1126-34. PubMed ID: 9927747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of alternative RNA splicing by exon definition and exon sequences in viral and mammalian gene expression.
    Zheng ZM
    J Biomed Sci; 2004; 11(3):278-94. PubMed ID: 15067211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Splicing of phenylalanine hydroxylase (PAH) exon 11 is vulnerable: molecular pathology of mutations in PAH exon 11.
    Heintz C; Dobrowolski SF; Andersen HS; Demirkol M; Blau N; Andresen BS
    Mol Genet Metab; 2012 Aug; 106(4):403-11. PubMed ID: 22698810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inference of splicing regulatory activities by sequence neighborhood analysis.
    Stadler MB; Shomron N; Yeo GW; Schneider A; Xiao X; Burge CB
    PLoS Genet; 2006 Nov; 2(11):e191. PubMed ID: 17121466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of SR protein exonic splicing enhancer motifs in human protein-coding genes.
    Wang J; Smith PJ; Krainer AR; Zhang MQ
    Nucleic Acids Res; 2005; 33(16):5053-62. PubMed ID: 16147989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vulnerable exons, like ACADM exon 5, are highly dependent on maintaining a correct balance between splicing enhancers and silencers.
    Holm LL; Doktor TK; Hansen MB; Petersen USS; Andresen BS
    Hum Mutat; 2022 Feb; 43(2):253-265. PubMed ID: 34923709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HnRNP L represses exon splicing via a regulated exonic splicing silencer.
    Rothrock CR; House AE; Lynch KW
    EMBO J; 2005 Aug; 24(15):2792-802. PubMed ID: 16001081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of splicing silencers and enhancers in sense Alus: a role for pseudoacceptors in splice site repression.
    Lei H; Vorechovsky I
    Mol Cell Biol; 2005 Aug; 25(16):6912-20. PubMed ID: 16055705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical identification of new proteins involved in splicing repression at the Drosophila P-element exonic splicing silencer.
    Horan L; Yasuhara JC; Kohlstaedt LA; Rio DC
    Genes Dev; 2015 Nov; 29(21):2298-311. PubMed ID: 26545814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silencer elements as possible inhibitors of pseudoexon splicing.
    Sironi M; Menozzi G; Riva L; Cagliani R; Comi GP; Bresolin N; Giorda R; Pozzoli U
    Nucleic Acids Res; 2004; 32(5):1783-91. PubMed ID: 15034146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The prevalent deep intronic c. 639+919 G>A GLA mutation causes pseudoexon activation and Fabry disease by abolishing the binding of hnRNPA1 and hnRNP A2/B1 to a splicing silencer.
    Palhais B; Dembic M; Sabaratnam R; Nielsen KS; Doktor TK; Bruun GH; Andresen BS
    Mol Genet Metab; 2016 Nov; 119(3):258-269. PubMed ID: 27595546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionarily emerged G tracts between the polypyrimidine tract and 3' AG are splicing silencers enriched in genes involved in cancer.
    Sohail M; Cao W; Mahmood N; Myschyshyn M; Hong SP; Xie J
    BMC Genomics; 2014 Dec; 15(1):1143. PubMed ID: 25523808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.