These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 16797583)
1. Cry toxin mode of action in susceptible and resistant Heliothis virescens larvae. Jurat-Fuentes JL; Adang MJ J Invertebr Pathol; 2006 Jul; 92(3):166-71. PubMed ID: 16797583 [TBL] [Abstract][Full Text] [Related]
2. A proteomic approach to study Cry1Ac binding proteins and their alterations in resistant Heliothis virescens larvae. Jurat-Fuentes JL; Adang MJ J Invertebr Pathol; 2007 Jul; 95(3):187-91. PubMed ID: 17467006 [TBL] [Abstract][Full Text] [Related]
3. The Heliothis virescens cadherin protein expressed in Drosophila S2 cells functions as a receptor for Bacillus thuringiensis Cry1A but not Cry1Fa toxins. Jurat-Fuentes JL; Adang MJ Biochemistry; 2006 Aug; 45(32):9688-95. PubMed ID: 16893170 [TBL] [Abstract][Full Text] [Related]
4. Mode of action of mosquitocidal Bacillus thuringiensis toxins. Soberón M; Fernández LE; Pérez C; Gill SS; Bravo A Toxicon; 2007 Apr; 49(5):597-600. PubMed ID: 17145072 [TBL] [Abstract][Full Text] [Related]
5. The diversity of Bt resistance genes in species of Lepidoptera. Heckel DG; Gahan LJ; Baxter SW; Zhao JZ; Shelton AM; Gould F; Tabashnik BE J Invertebr Pathol; 2007 Jul; 95(3):192-7. PubMed ID: 17482643 [TBL] [Abstract][Full Text] [Related]
6. Characterization of a Cry1Ac-receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae. Jurat-Fuentes JL; Adang MJ Eur J Biochem; 2004 Aug; 271(15):3127-35. PubMed ID: 15265032 [TBL] [Abstract][Full Text] [Related]
7. Analysis of midgut proteinases from Bacillus thuringiensis-susceptible and -resistant Heliothis virescens (Lepidoptera: Noctuidae). Karumbaiah L; Oppert B; Jurat-Fuentes JL; Adang MJ Comp Biochem Physiol B Biochem Mol Biol; 2007 Jan; 146(1):139-46. PubMed ID: 17145193 [TBL] [Abstract][Full Text] [Related]
8. Dual resistance to Bacillus thuringiensis Cry1Ac and Cry2Aa toxins in Heliothis virescens suggests multiple mechanisms of resistance. Jurat-Fuentes JL; Gould FL; Adang MJ Appl Environ Microbiol; 2003 Oct; 69(10):5898-906. PubMed ID: 14532042 [TBL] [Abstract][Full Text] [Related]
9. Three toxins, two receptors, one mechanism: Mode of action of Cry1A toxins from Bacillus thuringiensis in Heliothis virescens. Bretschneider A; Heckel DG; Pauchet Y Insect Biochem Mol Biol; 2016 Sep; 76():109-117. PubMed ID: 27456115 [TBL] [Abstract][Full Text] [Related]
10. Cloning and characterization of the Cry1Ac-binding alkaline phosphatase (HvALP) from Heliothis virescens. Perera OP; Willis JD; Adang MJ; Jurat-Fuentes JL Insect Biochem Mol Biol; 2009 Apr; 39(4):294-302. PubMed ID: 19552892 [TBL] [Abstract][Full Text] [Related]
11. Bacillus thuringiensis delta-endotoxin Cry1Ac domain III enhances activity against Heliothis virescens in some, but not all Cry1-Cry1Ac hybrids. Karlova R; Weemen-Hendriks M; Naimov S; Ceron J; Dukiandjiev S; de Maagd RA J Invertebr Pathol; 2005 Feb; 88(2):169-72. PubMed ID: 15766934 [TBL] [Abstract][Full Text] [Related]
12. The compatibility of a nucleopolyhedrosis virus control with resistance management for Bacillus thuringiensis: co-infection and cross-resistance studies with the diamondback moth, Plutella xylostella. Raymond B; Sayyed AH; Wright DJ J Invertebr Pathol; 2006 Oct; 93(2):114-20. PubMed ID: 16905146 [TBL] [Abstract][Full Text] [Related]
13. The HevCaLP protein mediates binding specificity of the Cry1A class of Bacillus thuringiensis toxins in Heliothis virescens. Jurat-Fuentes JL; Gahan LJ; Gould FL; Heckel DG; Adang MJ Biochemistry; 2004 Nov; 43(44):14299-305. PubMed ID: 15518581 [TBL] [Abstract][Full Text] [Related]
14. Susceptibility of Cry1Ab-resistant and -susceptible sugarcane borer (Lepidoptera: Crambidae) to four Bacillus thuringiensis toxins. Wu X; Rogers Leonard B; Zhu YC; Abel CA; Head GP; Huang F J Invertebr Pathol; 2009 Jan; 100(1):29-34. PubMed ID: 18955062 [TBL] [Abstract][Full Text] [Related]
15. Lack of detrimental effects of Bacillus thuringiensis Cry toxins on the insect predator Chrysoperla carnea: a toxicological, histopathological, and biochemical analysis. Rodrigo-Simón A; de Maagd RA; Avilla C; Bakker PL; Molthoff J; González-Zamora JE; Ferré J Appl Environ Microbiol; 2006 Feb; 72(2):1595-603. PubMed ID: 16461715 [TBL] [Abstract][Full Text] [Related]
16. Toxicity of Bacillus thuringiensis delta-endotoxins against bean shoot borer (Epinotia aporema Wals.) larvae, a major soybean pest in Argentina. Sauka DH; Sánchez J; Bravo A; Benintende GB J Invertebr Pathol; 2007 Feb; 94(2):125-9. PubMed ID: 17069845 [TBL] [Abstract][Full Text] [Related]
17. Fate of Bacillus thuringiensis strains in different insect larvae. Suzuki MT; Lereclus D; Arantes OM Can J Microbiol; 2004 Nov; 50(11):973-5. PubMed ID: 15644915 [TBL] [Abstract][Full Text] [Related]
18. Disruption of Ha_BtR alters binding of Bacillus thuringiensis delta-endotoxin Cry1Ac to midgut BBMVs of Helicoverpa armigera. Xu X; Wu Y J Invertebr Pathol; 2008 Jan; 97(1):27-32. PubMed ID: 17681529 [TBL] [Abstract][Full Text] [Related]