These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 16797933)
21. Structural analysis and serological test of arginine periplasmic binding protein 2 from Chlamydophila pneumoniae. Park SH; Chang JE; Hawkes HJ; Kang YH; Hwang KY Biochem Biophys Res Commun; 2012 Feb; 418(3):518-24. PubMed ID: 22285188 [TBL] [Abstract][Full Text] [Related]
22. Expression and localization of type III secretion-related proteins of Chlamydia pneumoniae. Lugert R; Kuhns M; Polch T; Gross U Med Microbiol Immunol; 2004 Nov; 193(4):163-71. PubMed ID: 14593477 [TBL] [Abstract][Full Text] [Related]
23. The hypothetical protein CT813 is localized in the Chlamydia trachomatis inclusion membrane and is immunogenic in women urogenitally infected with C. trachomatis. Chen C; Chen D; Sharma J; Cheng W; Zhong Y; Liu K; Jensen J; Shain R; Arulanandam B; Zhong G Infect Immun; 2006 Aug; 74(8):4826-40. PubMed ID: 16861671 [TBL] [Abstract][Full Text] [Related]
24. Localization of the hypothetical protein Cpn0585 in the inclusion membrane of Chlamydia pneumoniae-infected cells. Luo J; Jia T; Zhong Y; Chen D; Flores R; Zhong G Microb Pathog; 2007; 42(2-3):111-6. PubMed ID: 17236746 [TBL] [Abstract][Full Text] [Related]
25. Characterization of the hypothetical protein Cpn1027, a newly identified inclusion membrane protein unique to Chlamydia pneumoniae. Flores R; Luo J; Chen D; Sturgeon G; Shivshankar P; Zhong Y; Zhong G Microbiology (Reading); 2007 Mar; 153(Pt 3):777-86. PubMed ID: 17322198 [TBL] [Abstract][Full Text] [Related]
26. Immunogenicity of Cpn0425 and its localization in cells infected with Chlamydophila pneumoniae. Liu L; You X; Chen L; Zeng Y; Tang S; Yu M; Wu Y; Xhen X Mol Med Rep; 2012 Dec; 6(6):1239-42. PubMed ID: 22992790 [TBL] [Abstract][Full Text] [Related]
27. Functional interaction between type III-secreted protein IncA of Chlamydophila psittaci and human G3BP1. Borth N; Litsche K; Franke C; Sachse K; Saluz HP; Hänel F PLoS One; 2011 Jan; 6(1):e16692. PubMed ID: 21304914 [TBL] [Abstract][Full Text] [Related]
28. The Type III Secretion System-Related CPn0809 from Chlamydia pneumoniae. Engel AC; Herbst F; Kerres A; Galle JN; Hegemann JH PLoS One; 2016; 11(2):e0148509. PubMed ID: 26895250 [TBL] [Abstract][Full Text] [Related]
29. Molecular characterization and subcellular localization of macrophage infectivity potentiator, a Chlamydia trachomatis lipoprotein. Neff L; Daher S; Muzzin P; Spenato U; Gülaçar F; Gabay C; Bas S J Bacteriol; 2007 Jul; 189(13):4739-48. PubMed ID: 17449608 [TBL] [Abstract][Full Text] [Related]
30. Fate of Chlamydophila pneumoniae in human monocyte-derived dendritic cells: long lasting infection. Wittkop U; Krausse-Opatz B; Gust TC; Kirsch T; Hollweg G; Köhler L; Zenke M; Gérard HC; Hudson AP; Zeidler H; Wagner AD Microb Pathog; 2006 Mar; 40(3):101-9. PubMed ID: 16427247 [TBL] [Abstract][Full Text] [Related]
31. Transcriptional response patterns of Chlamydophila psittaci in different in vitro models of persistent infection. Goellner S; Schubert E; Liebler-Tenorio E; Hotzel H; Saluz HP; Sachse K Infect Immun; 2006 Aug; 74(8):4801-8. PubMed ID: 16861668 [TBL] [Abstract][Full Text] [Related]
32. Expression of bacterial genes and induction of INF-gamma in human myeloid dendritic cells during persistent infection with Chlamydophila pneumoniae. Kis Z; Treso B; Burian K; Endresz V; Pallinger E; Nagy A; Toth A; Takacs M; Falus A; Gonczol E FEMS Immunol Med Microbiol; 2008 Apr; 52(3):324-34. PubMed ID: 18312581 [TBL] [Abstract][Full Text] [Related]
33. Secretion of predicted Inc proteins of Chlamydia pneumoniae by a heterologous type III machinery. Subtil A; Parsot C; Dautry-Varsat A Mol Microbiol; 2001 Feb; 39(3):792-800. PubMed ID: 11169118 [TBL] [Abstract][Full Text] [Related]
34. Chlamydophila (Chlamydia) pneumoniae infection of human astrocytes and microglia in culture displays an active, rather than a persistent, phenotype. Dreses-Werringloer U; Gérard HC; Whittum-Hudson JA; Hudson AP Am J Med Sci; 2006 Oct; 332(4):168-74. PubMed ID: 17031241 [TBL] [Abstract][Full Text] [Related]
35. Inhibition of lymphocyte CD3 expression by Chlamydophila pneumoniae infection. Yamaguchi H; Matsuo J; Sugimoto S; Utsumi M; Yamamoto Y Microb Pathog; 2008 Oct; 45(4):290-6. PubMed ID: 18674609 [TBL] [Abstract][Full Text] [Related]
36. Scc1 (CP0432) and Scc4 (CP0033) function as a type III secretion chaperone for CopN of Chlamydia pneumoniae. Silva-Herzog E; Joseph SS; Avery AK; Coba JA; Wolf K; Fields KA; Plano GV J Bacteriol; 2011 Jul; 193(14):3490-6. PubMed ID: 21571996 [TBL] [Abstract][Full Text] [Related]
38. Chlamydophila pneumoniae changes iron homeostasis in infected tissues. Edvinsson M; Frisk P; Boman K; Tallkvist J; Ilbäck NG Int J Med Microbiol; 2008 Oct; 298(7-8):635-44. PubMed ID: 18436480 [TBL] [Abstract][Full Text] [Related]
39. Host cell Golgi anti-apoptotic protein (GAAP) and growth of Chlamydia pneumoniae. Markkula E; Hulkkonen J; Penttilä T; Puolakkainen M Microb Pathog; 2013 Jan; 54():46-53. PubMed ID: 23000903 [TBL] [Abstract][Full Text] [Related]
40. The transcript profile of persistent Chlamydophila (Chlamydia) pneumoniae in vitro depends on the means by which persistence is induced. Klos A; Thalmann J; Peters J; Gérard HC; Hudson AP FEMS Microbiol Lett; 2009 Feb; 291(1):120-6. PubMed ID: 19077059 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]