BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 16798107)

  • 1. Regulation of spblimp1/krox1a, an alternatively transcribed isoform expressed in midgut and hindgut of the sea urchin gastrula.
    Livi CB; Davidson EH
    Gene Expr Patterns; 2007 Jan; 7(1-2):1-7. PubMed ID: 16798107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression and function of blimp1/krox, an alternatively transcribed regulatory gene of the sea urchin endomesoderm network.
    Livi CB; Davidson EH
    Dev Biol; 2006 May; 293(2):513-25. PubMed ID: 16581059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. USF in the Lytechinus sea urchin embryo may act as a transcriptional repressor in non-aboral ectoderm cells for the cell lineage-specific expression of the LpS1 genes.
    Seid CA; George JM; Sater AK; Kozlowski MT; Lee H; Govindarajan V; Ramachandran RK; Tomlinson CR
    J Mol Biol; 1996 Nov; 264(1):7-19. PubMed ID: 8950263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patchy interspecific sequence similarities efficiently identify positive cis-regulatory elements in the sea urchin.
    Yuh CH; Brown CT; Livi CB; Rowen L; Clarke PJ; Davidson EH
    Dev Biol; 2002 Jun; 246(1):148-61. PubMed ID: 12027440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexibility of transcription factor target site position in conserved cis-regulatory modules.
    Cameron RA; Davidson EH
    Dev Biol; 2009 Dec; 336(1):122-35. PubMed ID: 19766623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary analysis of the cis-regulatory region of the spicule matrix gene SM50 in strongylocentrotid sea urchins.
    Walters J; Binkley E; Haygood R; Romano LA
    Dev Biol; 2008 Mar; 315(2):567-78. PubMed ID: 18262514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Caught in the evolutionary act: precise cis-regulatory basis of difference in the organization of gene networks of sea stars and sea urchins.
    Hinman VF; Nguyen A; Davidson EH
    Dev Biol; 2007 Dec; 312(2):584-95. PubMed ID: 17956756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hindgut specification and cell-adhesion functions of Sphox11/13b in the endoderm of the sea urchin embryo.
    Arenas-Mena C; Cameron RA; Davidson EH
    Dev Growth Differ; 2006 Sep; 48(7):463-72. PubMed ID: 16961593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of Spgatae, the Strongylocentrotus purpuratus ortholog of vertebrate GATA4/5/6 factors.
    Lee PY; Davidson EH
    Gene Expr Patterns; 2004 Dec; 5(2):161-5. PubMed ID: 15567710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for a mesodermal embryonic regulator of the sea urchin CyIIa gene.
    Martin EL; Consales C; Davidson EH; Arnone MI
    Dev Biol; 2001 Aug; 236(1):46-63. PubMed ID: 11456443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. cis-Regulatory inputs of the wnt8 gene in the sea urchin endomesoderm network.
    Minokawa T; Wikramanayake AH; Davidson EH
    Dev Biol; 2005 Dec; 288(2):545-58. PubMed ID: 16289024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exclusive developmental functions of gatae cis-regulatory modules in the Strongylocentrorus purpuratus embryo.
    Lee PY; Nam J; Davidson EH
    Dev Biol; 2007 Jul; 307(2):434-45. PubMed ID: 17570356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Creation of cis-regulatory elements during sea urchin evolution by co-option and optimization of a repetitive sequence adjacent to the spec2a gene.
    Dayal S; Kiyama T; Villinski JT; Zhang N; Liang S; Klein WH
    Dev Biol; 2004 Sep; 273(2):436-53. PubMed ID: 15328024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correct Expression of spec2a in the sea urchin embryo requires both Otx and other cis-regulatory elements.
    Yuh CH; Li X; Davidson EH; Klein WH
    Dev Biol; 2001 Apr; 232(2):424-38. PubMed ID: 11401403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An otx cis-regulatory module: a key node in the sea urchin endomesoderm gene regulatory network.
    Yuh CH; Dorman ER; Howard ML; Davidson EH
    Dev Biol; 2004 May; 269(2):536-51. PubMed ID: 15110718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two ParaHox genes, SpLox and SpCdx, interact to partition the posterior endoderm in the formation of a functional gut.
    Cole AG; Rizzo F; Martinez P; Fernandez-Serra M; Arnone MI
    Development; 2009 Feb; 136(4):541-9. PubMed ID: 19144720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The dynamic gene expression patterns of transcription factors constituting the sea urchin aboral ectoderm gene regulatory network.
    Chen JH; Luo YJ; Su YH
    Dev Dyn; 2011 Jan; 240(1):250-60. PubMed ID: 21181943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brn1/2/4, the predicted midgut regulator of the endo16 gene of the sea urchin embryo.
    Yuh CH; Dorman ER; Davidson EH
    Dev Biol; 2005 May; 281(2):286-98. PubMed ID: 15893979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternative splicing of the Endo16 transcript produces differentially expressed mRNAs during sea urchin gastrulation.
    Godin RE; Urry LA; Ernst SG
    Dev Biol; 1996 Oct; 179(1):148-59. PubMed ID: 8873760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. cis-Regulatory sequences driving the expression of the Hbox12 homeobox-containing gene in the presumptive aboral ectoderm territory of the Paracentrotus lividus sea urchin embryo.
    Cavalieri V; Di Bernardo M; Anello L; Spinelli G
    Dev Biol; 2008 Sep; 321(2):455-69. PubMed ID: 18585371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.