These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
812 related articles for article (PubMed ID: 1679847)
1. Comparison of nicorandil-induced relaxation, elevations of cyclic guanosine monophosphate and stimulation of guanylate cyclase with organic nitrate esters. Greenberg SS; Cantor E; Ho E; Walega M J Pharmacol Exp Ther; 1991 Sep; 258(3):1061-71. PubMed ID: 1679847 [TBL] [Abstract][Full Text] [Related]
2. Nicorandil: differential contribution of K+ channel opening and guanylate cyclase stimulation to its vasorelaxant effects on various endothelin-1-contracted arterial preparations. Comparison to aprikalim (RP 52891) and nitroglycerin. Borg C; Mondot S; Mestre M; Cavero I J Pharmacol Exp Ther; 1991 Nov; 259(2):526-34. PubMed ID: 1682478 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of ITF 296-induced vasorelaxation compared to nitroglycerin and isosorbide dinitrate: relationship between relaxation of rabbit aorta and tissue cGMP. Donà G; Giuliani P; Cremonesi P; Passaro A; Stella P; Tursi F; Mizrahi J J Cardiovasc Pharmacol; 1995; 26 Suppl 4():S59-66. PubMed ID: 8839228 [TBL] [Abstract][Full Text] [Related]
4. Relationship between cyclic guanosine monophosphate accumulation and relaxation of canine trachealis induced by nitrovasodilators. Zhou HL; Torphy TJ J Pharmacol Exp Ther; 1991 Sep; 258(3):972-8. PubMed ID: 1679854 [TBL] [Abstract][Full Text] [Related]
5. Nicorandil-induced vasorelaxation: functional evidence for K+ channel-dependent and cyclic GMP-dependent components in a single vascular preparation. Meisheri KD; Cipkus-Dubray LA; Hosner JM; Khan SA J Cardiovasc Pharmacol; 1991 Jun; 17(6):903-12. PubMed ID: 1714013 [TBL] [Abstract][Full Text] [Related]
6. The contribution of guanylate cyclase stimulation and K+ channel opening to nicorandil-induced vasorelaxation depends on the conduit vessel and on the nature of the spasmogen. Magnon M; Durand I; Cavero I J Pharmacol Exp Ther; 1994 Mar; 268(3):1411-8. PubMed ID: 7908056 [TBL] [Abstract][Full Text] [Related]
7. Effect of YC-1, an NO-independent, superoxide-sensitive stimulator of soluble guanylyl cyclase, on smooth muscle responsiveness to nitrovasodilators. Mülsch A; Bauersachs J; Schäfer A; Stasch JP; Kast R; Busse R Br J Pharmacol; 1997 Feb; 120(4):681-9. PubMed ID: 9051308 [TBL] [Abstract][Full Text] [Related]
8. Structure-activity relationship of organic nitrates for activation of guanylate cyclase. Schröder H; Noack E Arch Int Pharmacodyn Ther; 1987 Dec; 290(2):235-46. PubMed ID: 2895614 [TBL] [Abstract][Full Text] [Related]
9. Stimulation of coronary guanylate cyclase by nicorandil (SG-75) as a mechanism of its vasodilating action. Schmidt K; Reich R; Kukovetz WR J Cyclic Nucleotide Protein Phosphor Res; 1985; 10(1):43-53. PubMed ID: 2858501 [TBL] [Abstract][Full Text] [Related]
10. Desensitization of NO/cGMP signaling in smooth muscle: blood vessels versus airways. Mullershausen F; Lange A; Mergia E; Friebe A; Koesling D Mol Pharmacol; 2006 Jun; 69(6):1969-74. PubMed ID: 16510560 [TBL] [Abstract][Full Text] [Related]
11. Characterization of NS 2028 as a specific inhibitor of soluble guanylyl cyclase. Olesen SP; Drejer J; Axelsson O; Moldt P; Bang L; Nielsen-Kudsk JE; Busse R; Mülsch A Br J Pharmacol; 1998 Jan; 123(2):299-309. PubMed ID: 9489619 [TBL] [Abstract][Full Text] [Related]
13. Regulation and role of guanylate cyclase-cyclic GMP in vascular relaxation. Murad F; Waldman S; Molina C; Bennett B; Leitman D Prog Clin Biol Res; 1987; 249():65-76. PubMed ID: 2890172 [TBL] [Abstract][Full Text] [Related]
14. Oxidative stress and mitochondrial aldehyde dehydrogenase activity: a comparison of pentaerythritol tetranitrate with other organic nitrates. Daiber A; Oelze M; Coldewey M; Bachschmid M; Wenzel P; Sydow K; Wendt M; Kleschyov AL; Stalleicken D; Ullrich V; Mülsch A; Münzel T Mol Pharmacol; 2004 Dec; 66(6):1372-82. PubMed ID: 15331769 [TBL] [Abstract][Full Text] [Related]
15. Role of cyclic GMP of canine vascular smooth muscle in relaxation by organic nitrates. Shibata T; Ogawa K; Ito T; Hashimoto H; Nakagawa H; Satake T Jpn Circ J; 1986 Nov; 50(11):1091-9. PubMed ID: 3029446 [TBL] [Abstract][Full Text] [Related]
16. Nitric oxide-evoked transient kinetics of cyclic GMP in vascular smooth muscle cells. Cawley SM; Sawyer CL; Brunelle KF; van der Vliet A; Dostmann WR Cell Signal; 2007 May; 19(5):1023-33. PubMed ID: 17207606 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of the action of nitric oxide prodrugs by pyocyanin: mechanistic studies. Hussain AS; Bozinovski J; Maurice DH; McLaughlin BE; Marks GS; Brien JF; Nakatsu K Can J Physiol Pharmacol; 1997 May; 75(5):398-406. PubMed ID: 9250373 [TBL] [Abstract][Full Text] [Related]
18. Similarity and dissimilarity in the mode and mechanism of action between nicorandil and classical nitrates: an overview. Taira N J Cardiovasc Pharmacol; 1987; 10 Suppl 8():S1-9. PubMed ID: 2447414 [TBL] [Abstract][Full Text] [Related]
19. Echinacoside elicits endothelium-dependent relaxation in rat aortic rings via an NO-cGMP pathway. He WJ; Fang TH; Ma X; Zhang K; Ma ZZ; Tu PF Planta Med; 2009 Oct; 75(13):1400-4. PubMed ID: 19468974 [TBL] [Abstract][Full Text] [Related]
20. Cyclic GMP in nicorandil-induced vasodilatation and tolerance development. Kukovetz WR; Holzmann S J Cardiovasc Pharmacol; 1987; 10 Suppl 8():S25-30. PubMed ID: 2447421 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]