BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 16798742)

  • 1. Intrinsic kinase activity and SQ/TQ domain of Chk2 kinase as well as N-terminal domain of Wip1 phosphatase are required for regulation of Chk2 by Wip1.
    Yoda A; Xu XZ; Onishi N; Toyoshima K; Fujimoto H; Kato N; Oishi I; Kondo T; Minami Y
    J Biol Chem; 2006 Aug; 281(34):24847-62. PubMed ID: 16798742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of the antioncogenic Chk2 kinase by the oncogenic Wip1 phosphatase.
    Fujimoto H; Onishi N; Kato N; Takekawa M; Xu XZ; Kosugi A; Kondo T; Imamura M; Oishi I; Yoda A; Minami Y
    Cell Death Differ; 2006 Jul; 13(7):1170-80. PubMed ID: 16311512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic trioxide augments Chk2/p53-mediated apoptosis by inhibiting oncogenic Wip1 phosphatase.
    Yoda A; Toyoshima K; Watanabe Y; Onishi N; Hazaka Y; Tsukuda Y; Tsukada J; Kondo T; Tanaka Y; Minami Y
    J Biol Chem; 2008 Jul; 283(27):18969-79. PubMed ID: 18482988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased wild-type p53-induced phosphatase 1 (Wip1 or PPM1D) expression correlated with downregulation of checkpoint kinase 2 in human gastric carcinoma.
    Fuku T; Semba S; Yutori H; Yokozaki H
    Pathol Int; 2007 Sep; 57(9):566-71. PubMed ID: 17685927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Wip1 phosphatase PPM1D dephosphorylates SQ/TQ motifs in checkpoint substrates phosphorylated by PI3K-like kinases.
    Yamaguchi H; Durell SR; Chatterjee DK; Anderson CW; Appella E
    Biochemistry; 2007 Nov; 46(44):12594-603. PubMed ID: 17939684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Wip1 phosphatase (PPM1D) antagonizes activation of the Chk2 tumour suppressor kinase.
    Oliva-Trastoy M; Berthonaud V; Chevalier A; Ducrot C; Marsolier-Kergoat MC; Mann C; Leteurtre F
    Oncogene; 2007 Mar; 26(10):1449-58. PubMed ID: 16936775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA damage-induced regulatory interplay between DAXX, p53, ATM kinase and Wip1 phosphatase.
    Brazina J; Svadlenka J; Macurek L; Andera L; Hodny Z; Bartek J; Hanzlikova H
    Cell Cycle; 2015; 14(3):375-87. PubMed ID: 25659035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A protein phosphatase feedback mechanism regulates the basal phosphorylation of Chk2 kinase in the absence of DNA damage.
    Carlessi L; Buscemi G; Fontanella E; Delia D
    Biochim Biophys Acta; 2010 Oct; 1803(10):1213-23. PubMed ID: 20599567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Augmented cancer resistance and DNA damage response phenotypes in PPM1D null mice.
    Nannenga B; Lu X; Dumble M; Van Maanen M; Nguyen TA; Sutton R; Kumar TR; Donehower LA
    Mol Carcinog; 2006 Aug; 45(8):594-604. PubMed ID: 16652371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The estrogen receptor alpha pathway induces oncogenic Wip1 phosphatase gene expression.
    Han HS; Yu E; Song JY; Park JY; Jang SJ; Choi J
    Mol Cancer Res; 2009 May; 7(5):713-23. PubMed ID: 19435816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interdependent phosphorylation within the kinase domain T-loop Regulates CHK2 activity.
    Guo X; Ward MD; Tiedebohl JB; Oden YM; Nyalwidhe JO; Semmes OJ
    J Biol Chem; 2010 Oct; 285(43):33348-33357. PubMed ID: 20713355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fenofibrate antagonizes Chk2 activation by inducing Wip1 expression: implications for cell proliferation and tumorigenesis.
    Joe Y; Do MH; Seo E; Kang S; Park HT; Yun J; Lee HJ
    Life Sci; 2010 May; 86(19-20):716-21. PubMed ID: 20226795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein phosphatase 2A interacts with Chk2 and regulates phosphorylation at Thr-68 after cisplatin treatment of human ovarian cancer cells.
    Liang X; Reed E; Yu JJ
    Int J Mol Med; 2006 May; 17(5):703-8. PubMed ID: 16596250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alkyl-substituted N-methylaryl-N'-aryl-4-aminobenzamides: A new series of small molecule inhibitors for Wip1 phosphatase.
    Robello M; Zheng H; Saha M; George Rosenker KM; Debnath S; Kumar JP; Tagad HD; Mazur SJ; Appella E; Appella DH
    Eur J Med Chem; 2022 Dec; 243():114763. PubMed ID: 36179402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a substrate-based cyclic phosphopeptide inhibitor of protein phosphatase 2Cdelta, Wip1.
    Yamaguchi H; Durell SR; Feng H; Bai Y; Anderson CW; Appella E
    Biochemistry; 2006 Nov; 45(44):13193-202. PubMed ID: 17073441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The type 2C phosphatase Wip1: an oncogenic regulator of tumor suppressor and DNA damage response pathways.
    Lu X; Nguyen TA; Moon SH; Darlington Y; Sommer M; Donehower LA
    Cancer Metastasis Rev; 2008 Jun; 27(2):123-35. PubMed ID: 18265945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. WIP1 phosphatase at the crossroads of cancer and aging.
    Le Guezennec X; Bulavin DV
    Trends Biochem Sci; 2010 Feb; 35(2):109-14. PubMed ID: 19879149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of Chk2 phosphorylation by interaction with protein phosphatase 2A via its B' regulatory subunit.
    Dozier C; Bonyadi M; Baricault L; Tonasso L; Darbon JM
    Biol Cell; 2004 Sep; 96(7):509-17. PubMed ID: 15380617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. WIP1, a homeostatic regulator of the DNA damage response, is targeted by HIPK2 for phosphorylation and degradation.
    Choi DW; Na W; Kabir MH; Yi E; Kwon S; Yeom J; Ahn JW; Choi HH; Lee Y; Seo KW; Shin MK; Park SH; Yoo HY; Isono K; Koseki H; Kim ST; Lee C; Kwon YK; Choi CY
    Mol Cell; 2013 Aug; 51(3):374-85. PubMed ID: 23871434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversal of the ATM/ATR-mediated DNA damage response by the oncogenic phosphatase PPM1D.
    Lu X; Nguyen TA; Donehower LA
    Cell Cycle; 2005 Aug; 4(8):1060-4. PubMed ID: 15970689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.