These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 16798750)
61. Analysis of mass spectrometry data in proteomics. Matthiesen R; Jensen ON Methods Mol Biol; 2008; 453():105-22. PubMed ID: 18712299 [TBL] [Abstract][Full Text] [Related]
62. Characterization of human skeletal muscle biopsy samples using shotgun proteomics. Parker KC; Walsh RJ; Salajegheh M; Amato AA; Krastins B; Sarracino DA; Greenberg SA J Proteome Res; 2009 Jul; 8(7):3265-77. PubMed ID: 19382779 [TBL] [Abstract][Full Text] [Related]
63. Gel-free analysis of the human brain proteome: application of liquid chromatography and mass spectrometry on biopsy and autopsy samples. Dumont D; Noben JP; Verhaert P; Stinissen P; Robben J Proteomics; 2006 Sep; 6(18):4967-77. PubMed ID: 16912970 [TBL] [Abstract][Full Text] [Related]
64. Mapping the lung proteome in cystic fibrosis. Gharib SA; Vaisar T; Aitken ML; Park DR; Heinecke JW; Fu X J Proteome Res; 2009 Jun; 8(6):3020-8. PubMed ID: 19354268 [TBL] [Abstract][Full Text] [Related]
65. Analysis of mouse brain microvascular endothelium using immuno-laser capture microdissection coupled to a hybrid linear ion trap with Fourier transform-mass spectrometry proteomics platform. Lu Q; Murugesan N; Macdonald JA; Wu SL; Pachter JS; Hancock WS Electrophoresis; 2008 Jun; 29(12):2689-95. PubMed ID: 18481836 [TBL] [Abstract][Full Text] [Related]
67. PRISM: a data management system for high-throughput proteomics. Kiebel GR; Auberry KJ; Jaitly N; Clark DA; Monroe ME; Peterson ES; Tolić N; Anderson GA; Smith RD Proteomics; 2006 Mar; 6(6):1783-90. PubMed ID: 16470653 [TBL] [Abstract][Full Text] [Related]
68. Introducing the CPL/MUW proteome database: interpretation of human liver and liver cancer proteome profiles by referring to isolated primary cells. Wimmer H; Gundacker NC; Griss J; Haudek VJ; Stättner S; Mohr T; Zwickl H; Paulitschke V; Baron DM; Trittner W; Kubicek M; Bayer E; Slany A; Gerner C Electrophoresis; 2009 Jun; 30(12):2076-89. PubMed ID: 19582709 [TBL] [Abstract][Full Text] [Related]
69. An integrated serum proteomic approach capable of monitoring the low molecular weight proteome with sequencing of intermediate to large peptides. Merrell K; Thulin CD; Esplin MS; Graves SW Rapid Commun Mass Spectrom; 2009 Sep; 23(17):2685-96. PubMed ID: 19630037 [TBL] [Abstract][Full Text] [Related]
70. Automated image alignment for 2D gel electrophoresis in a high-throughput proteomics pipeline. Dowsey AW; Dunn MJ; Yang GZ Bioinformatics; 2008 Apr; 24(7):950-7. PubMed ID: 18310057 [TBL] [Abstract][Full Text] [Related]
71. Strategy for surveying the proteome using affinity proteomics and mass spectrometry. Wingren C; James P; Borrebaeck CA Proteomics; 2009 Mar; 9(6):1511-7. PubMed ID: 19235165 [TBL] [Abstract][Full Text] [Related]
72. High-throughput proteomics of breast carcinoma cells: a focus on FTICR-MS. Umar A; Jaremko M; Burgers PC; Luider TM; Foekens JA; Pasa-Tolic L Expert Rev Proteomics; 2008 Jun; 5(3):445-55. PubMed ID: 18532912 [TBL] [Abstract][Full Text] [Related]
73. A double-vented tetraphasic continuous column approach to MuDPIT analysis on long capillary columns demonstrates superior proteomic coverage. Guzzetta AW; Chien AS J Proteome Res; 2005; 4(6):2412-9. PubMed ID: 16335995 [TBL] [Abstract][Full Text] [Related]
74. Precursor ion independent algorithm for top-down shotgun proteomics. Tsai YS; Scherl A; Shaw JL; MacKay CL; Shaffer SA; Langridge-Smith PR; Goodlett DR J Am Soc Mass Spectrom; 2009 Nov; 20(11):2154-66. PubMed ID: 19773183 [TBL] [Abstract][Full Text] [Related]
75. Identification of protein biomarkers in human serum using iTRAQ and shotgun mass spectrometry. Koutroukides TA; Jaros JA; Amess B; Martins-de-Souza D; Guest PC; Rahmoune H; Levin Y; Deery M; Charles PD; Hester S; Groen A; Christoforou A; Howard J; Bond N; Bahn S; Lilley KS Methods Mol Biol; 2013; 1061():291-307. PubMed ID: 23963945 [TBL] [Abstract][Full Text] [Related]
76. Intact proteome fractionation strategies compatible with mass spectrometry. Doucette AA; Tran JC; Wall MJ; Fitzsimmons S Expert Rev Proteomics; 2011 Dec; 8(6):787-800. PubMed ID: 22087661 [TBL] [Abstract][Full Text] [Related]
77. Systematic and quantitative comparison of digest efficiency and specificity reveals the impact of trypsin quality on MS-based proteomics. Burkhart JM; Schumbrutzki C; Wortelkamp S; Sickmann A; Zahedi RP J Proteomics; 2012 Feb; 75(4):1454-62. PubMed ID: 22166745 [TBL] [Abstract][Full Text] [Related]
78. Analyzing proteomic expression in a clinical screening environment using mass spectrometry. Chace DH; Spitzer A Expert Rev Proteomics; 2005 Aug; 2(4):453-4. PubMed ID: 16097879 [No Abstract] [Full Text] [Related]
79. Optimal de novo design of MRM experiments for rapid assay development in targeted proteomics. Bertsch A; Jung S; Zerck A; Pfeifer N; Nahnsen S; Henneges C; Nordheim A; Kohlbacher O J Proteome Res; 2010 May; 9(5):2696-704. PubMed ID: 20201589 [TBL] [Abstract][Full Text] [Related]
80. Comparison of the LTQ-Orbitrap Velos and the Q-Exactive for proteomic analysis of 1-1000 ng RAW 264.7 cell lysate digests. Sun L; Zhu G; Dovichi NJ Rapid Commun Mass Spectrom; 2013 Jan; 27(1):157-62. PubMed ID: 23239329 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]