These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 16799057)
1. Photoreceptor organization and rhythmic phagocytosis in the nile rat Arvicanthis ansorgei: a novel diurnal rodent model for the study of cone pathophysiology. Bobu C; Craft CM; Masson-Pevet M; Hicks D Invest Ophthalmol Vis Sci; 2006 Jul; 47(7):3109-18. PubMed ID: 16799057 [TBL] [Abstract][Full Text] [Related]
2. Regulation of retinal photoreceptor phagocytosis in a diurnal mammal by circadian clocks and ambient lighting. Bobu C; Hicks D Invest Ophthalmol Vis Sci; 2009 Jul; 50(7):3495-502. PubMed ID: 19234351 [TBL] [Abstract][Full Text] [Related]
3. Photoreceptor organisation and phenotypic characterization in retinas of two diurnal rodent species: potential use as experimental animal models for human vision research. Bobu C; Lahmam M; Vuillez P; Ouarour A; Hicks D Vision Res; 2008 Feb; 48(3):424-32. PubMed ID: 17928024 [TBL] [Abstract][Full Text] [Related]
5. Prolonged light exposure induces widespread phase shifting in the circadian clock and visual pigment gene expression of the Arvicanthis ansorgei retina. Bobu C; Sandu C; Laurent V; Felder-Schmittbuhl MP; Hicks D Mol Vis; 2013; 19():1060-73. PubMed ID: 23734075 [TBL] [Abstract][Full Text] [Related]
6. Structural and physiological responses to prolonged constant lighting in the cone-rich retina of Arvicanthis ansorgei. Mehdi MK; Hicks D Exp Eye Res; 2010 Dec; 91(6):793-9. PubMed ID: 20950611 [TBL] [Abstract][Full Text] [Related]
7. Cone loss is delayed relative to rod loss during induced retinal degeneration in the diurnal cone-rich rodent Arvicanthis ansorgei. Boudard DL; Tanimoto N; Huber G; Beck SC; Seeliger MW; Hicks D Neuroscience; 2010 Sep; 169(4):1815-30. PubMed ID: 20600653 [TBL] [Abstract][Full Text] [Related]
8. Short and mid-wavelength cone distribution in a nocturnal Strepsirrhine primate (Microcebus murinus). Dkhissi-Benyahya O; Szel A; Degrip WJ; Cooper HM J Comp Neurol; 2001 Oct; 438(4):490-504. PubMed ID: 11559903 [TBL] [Abstract][Full Text] [Related]
9. Topographic arrangement of S-cone photoreceptors in the retina of the diurnal Nile grass rat (Arvicanthis niloticus). Gaillard F; Kuny S; Sauvé Y Invest Ophthalmol Vis Sci; 2009 Nov; 50(11):5426-34. PubMed ID: 19553614 [TBL] [Abstract][Full Text] [Related]
10. The status of cones in the rhodopsin mutant P23H-3 retina: light-regulated damage and repair in parallel with rods. Chrysostomou V; Stone J; Stowe S; Barnett NL; Valter K Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):1116-25. PubMed ID: 18326739 [TBL] [Abstract][Full Text] [Related]
11. Characterization of calbindin-positive cones in primates. Chiquet C; Dkhissi-Benyahya O; Chounlamountri N; Szel A; Degrip WJ; Cooper HM Neuroscience; 2002; 115(4):1323-33. PubMed ID: 12453500 [TBL] [Abstract][Full Text] [Related]
12. Diurnal rodents as animal models of human central vision: characterisation of the retina of the sand rat Psammomys obsesus. Saïdi T; Mbarek S; Chaouacha-Chekir RB; Hicks D Graefes Arch Clin Exp Ophthalmol; 2011 Jul; 249(7):1029-37. PubMed ID: 21399940 [TBL] [Abstract][Full Text] [Related]
13. Unusual cone and rod properties in subterranean African mole-rats (Rodentia, Bathyergidae). Peichl L; Nemec P; Burda H Eur J Neurosci; 2004 Mar; 19(6):1545-58. PubMed ID: 15066151 [TBL] [Abstract][Full Text] [Related]
14. Identification and distribution of photoreceptor subtypes in the neotenic tiger salamander retina. Sherry DM; Bui DD; Degrip WJ Vis Neurosci; 1998; 15(6):1175-87. PubMed ID: 9839981 [TBL] [Abstract][Full Text] [Related]
15. Distribution of S- and M-cones in normal and experimentally detached cat retina. Linberg KA; Lewis GP; Shaaw C; Rex TS; Fisher SK J Comp Neurol; 2001 Feb; 430(3):343-56. PubMed ID: 11169472 [TBL] [Abstract][Full Text] [Related]
16. The topography of rods, cones and intrinsically photosensitive retinal ganglion cells in the retinas of a nocturnal (Micaelamys namaquensis) and a diurnal (Rhabdomys pumilio) rodent. van der Merwe I; Lukáts Á; Bláhová V; Oosthuizen MK; Bennett NC; Němec P PLoS One; 2018; 13(8):e0202106. PubMed ID: 30092025 [TBL] [Abstract][Full Text] [Related]
17. Evolutionary transformation of rod photoreceptors in the all-cone retina of a diurnal garter snake. Schott RK; Müller J; Yang CG; Bhattacharyya N; Chan N; Xu M; Morrow JM; Ghenu AH; Loew ER; Tropepe V; Chang BS Proc Natl Acad Sci U S A; 2016 Jan; 113(2):356-61. PubMed ID: 26715746 [TBL] [Abstract][Full Text] [Related]
18. A mouse-like retinal cone phenotype in the Syrian hamster: S opsin coexpressed with M opsin in a common cone photoreceptor. Glösmann M; Ahnelt PK Brain Res; 2002 Mar; 929(1):139-46. PubMed ID: 11852040 [TBL] [Abstract][Full Text] [Related]
19. Retinal cone photoreceptors of the deer mouse Peromyscus maniculatus: development, topography, opsin expression and spectral tuning. Arbogast P; Glösmann M; Peichl L PLoS One; 2013; 8(11):e80910. PubMed ID: 24260509 [TBL] [Abstract][Full Text] [Related]