BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 16799057)

  • 1. Photoreceptor organization and rhythmic phagocytosis in the nile rat Arvicanthis ansorgei: a novel diurnal rodent model for the study of cone pathophysiology.
    Bobu C; Craft CM; Masson-Pevet M; Hicks D
    Invest Ophthalmol Vis Sci; 2006 Jul; 47(7):3109-18. PubMed ID: 16799057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of retinal photoreceptor phagocytosis in a diurnal mammal by circadian clocks and ambient lighting.
    Bobu C; Hicks D
    Invest Ophthalmol Vis Sci; 2009 Jul; 50(7):3495-502. PubMed ID: 19234351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoreceptor organisation and phenotypic characterization in retinas of two diurnal rodent species: potential use as experimental animal models for human vision research.
    Bobu C; Lahmam M; Vuillez P; Ouarour A; Hicks D
    Vision Res; 2008 Feb; 48(3):424-32. PubMed ID: 17928024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circadian-clock driven cone-like photoreceptor phagocytosis in the neural retina leucine zipper gene knockout mouse.
    Krigel A; Felder-Schmittbuhl MP; Hicks D
    Mol Vis; 2010 Dec; 16():2873-81. PubMed ID: 21203345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prolonged light exposure induces widespread phase shifting in the circadian clock and visual pigment gene expression of the Arvicanthis ansorgei retina.
    Bobu C; Sandu C; Laurent V; Felder-Schmittbuhl MP; Hicks D
    Mol Vis; 2013; 19():1060-73. PubMed ID: 23734075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and physiological responses to prolonged constant lighting in the cone-rich retina of Arvicanthis ansorgei.
    Mehdi MK; Hicks D
    Exp Eye Res; 2010 Dec; 91(6):793-9. PubMed ID: 20950611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cone loss is delayed relative to rod loss during induced retinal degeneration in the diurnal cone-rich rodent Arvicanthis ansorgei.
    Boudard DL; Tanimoto N; Huber G; Beck SC; Seeliger MW; Hicks D
    Neuroscience; 2010 Sep; 169(4):1815-30. PubMed ID: 20600653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short and mid-wavelength cone distribution in a nocturnal Strepsirrhine primate (Microcebus murinus).
    Dkhissi-Benyahya O; Szel A; Degrip WJ; Cooper HM
    J Comp Neurol; 2001 Oct; 438(4):490-504. PubMed ID: 11559903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topographic arrangement of S-cone photoreceptors in the retina of the diurnal Nile grass rat (Arvicanthis niloticus).
    Gaillard F; Kuny S; Sauvé Y
    Invest Ophthalmol Vis Sci; 2009 Nov; 50(11):5426-34. PubMed ID: 19553614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The status of cones in the rhodopsin mutant P23H-3 retina: light-regulated damage and repair in parallel with rods.
    Chrysostomou V; Stone J; Stowe S; Barnett NL; Valter K
    Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):1116-25. PubMed ID: 18326739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of calbindin-positive cones in primates.
    Chiquet C; Dkhissi-Benyahya O; Chounlamountri N; Szel A; Degrip WJ; Cooper HM
    Neuroscience; 2002; 115(4):1323-33. PubMed ID: 12453500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diurnal rodents as animal models of human central vision: characterisation of the retina of the sand rat Psammomys obsesus.
    Saïdi T; Mbarek S; Chaouacha-Chekir RB; Hicks D
    Graefes Arch Clin Exp Ophthalmol; 2011 Jul; 249(7):1029-37. PubMed ID: 21399940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unusual cone and rod properties in subterranean African mole-rats (Rodentia, Bathyergidae).
    Peichl L; Nemec P; Burda H
    Eur J Neurosci; 2004 Mar; 19(6):1545-58. PubMed ID: 15066151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and distribution of photoreceptor subtypes in the neotenic tiger salamander retina.
    Sherry DM; Bui DD; Degrip WJ
    Vis Neurosci; 1998; 15(6):1175-87. PubMed ID: 9839981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of S- and M-cones in normal and experimentally detached cat retina.
    Linberg KA; Lewis GP; Shaaw C; Rex TS; Fisher SK
    J Comp Neurol; 2001 Feb; 430(3):343-56. PubMed ID: 11169472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The topography of rods, cones and intrinsically photosensitive retinal ganglion cells in the retinas of a nocturnal (Micaelamys namaquensis) and a diurnal (Rhabdomys pumilio) rodent.
    van der Merwe I; Lukáts Á; Bláhová V; Oosthuizen MK; Bennett NC; Němec P
    PLoS One; 2018; 13(8):e0202106. PubMed ID: 30092025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary transformation of rod photoreceptors in the all-cone retina of a diurnal garter snake.
    Schott RK; Müller J; Yang CG; Bhattacharyya N; Chan N; Xu M; Morrow JM; Ghenu AH; Loew ER; Tropepe V; Chang BS
    Proc Natl Acad Sci U S A; 2016 Jan; 113(2):356-61. PubMed ID: 26715746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mouse-like retinal cone phenotype in the Syrian hamster: S opsin coexpressed with M opsin in a common cone photoreceptor.
    Glösmann M; Ahnelt PK
    Brain Res; 2002 Mar; 929(1):139-46. PubMed ID: 11852040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retinal cone photoreceptors of the deer mouse Peromyscus maniculatus: development, topography, opsin expression and spectral tuning.
    Arbogast P; Glösmann M; Peichl L
    PLoS One; 2013; 8(11):e80910. PubMed ID: 24260509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intrinsic photosensitive retinal ganglion cells in the diurnal rodent, Arvicanthis ansorgei.
    Karnas D; Hicks D; Mordel J; Pévet P; Meissl H
    PLoS One; 2013; 8(8):e73343. PubMed ID: 23951350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.