These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 16799259)

  • 1. Molecular mechanism of neuronal plasticity: induction and maintenance of long-term potentiation in the hippocampus.
    Miyamoto E
    J Pharmacol Sci; 2006; 100(5):433-42. PubMed ID: 16799259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ca(2+)-permeable AMPA receptors induce phosphorylation of cAMP response element-binding protein through a phosphatidylinositol 3-kinase-dependent stimulation of the mitogen-activated protein kinase signaling cascade in neurons.
    Perkinton MS; Sihra TS; Williams RJ
    J Neurosci; 1999 Jul; 19(14):5861-74. PubMed ID: 10407026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of calcium/calmodulin-dependent protein kinase IV in long term potentiation in the rat hippocampal CA1 region.
    Kasahara J; Fukunaga K; Miyamoto E
    J Biol Chem; 2001 Jun; 276(26):24044-50. PubMed ID: 11306573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasticity-specific phosphorylation of CaMKII, MAP-kinases and CREB during late-LTP in rat hippocampal slices in vitro.
    Ahmed T; Frey JU
    Neuropharmacology; 2005 Sep; 49(4):477-92. PubMed ID: 16005911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Participation of NMDA-mediated phosphorylation and oxidation of neurogranin in the regulation of Ca2+- and Ca2+/calmodulin-dependent neuronal signaling in the hippocampus.
    Wu J; Huang KP; Huang FL
    J Neurochem; 2003 Sep; 86(6):1524-33. PubMed ID: 12950461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ca(2+) permeable AMPA receptor induced long-term potentiation requires PI3/MAP kinases but not Ca/CaM-dependent kinase II.
    Asrar S; Zhou Z; Ren W; Jia Z
    PLoS One; 2009; 4(2):e4339. PubMed ID: 19190753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CaM kinase II in long-term potentiation.
    Fukunaga K; Muller D; Miyamoto E
    Neurochem Int; 1996 Apr; 28(4):343-58. PubMed ID: 8740440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calmodulin-dependent kinase kinase/calmodulin kinase I activity gates extracellular-regulated kinase-dependent long-term potentiation.
    Schmitt JM; Guire ES; Saneyoshi T; Soderling TR
    J Neurosci; 2005 Feb; 25(5):1281-90. PubMed ID: 15689566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impaired synaptic plasticity and cAMP response element-binding protein activation in Ca2+/calmodulin-dependent protein kinase type IV/Gr-deficient mice.
    Ho N; Liauw JA; Blaeser F; Wei F; Hanissian S; Muglia LM; Wozniak DF; Nardi A; Arvin KL; Holtzman DM; Linden DJ; Zhuo M; Muglia LJ; Chatila TA
    J Neurosci; 2000 Sep; 20(17):6459-72. PubMed ID: 10964952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca2+/calmodulin-dependent protein kinase II-dependent long-term potentiation in the rat suprachiasmatic nucleus and its inhibition by melatonin.
    Fukunaga K; Horikawa K; Shibata S; Takeuchi Y; Miyamoto E
    J Neurosci Res; 2002 Dec; 70(6):799-807. PubMed ID: 12444602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential roles of Ca(2+)/calmodulin-dependent protein kinase II and mitogen-activated protein kinase activation in hippocampal long-term potentiation.
    Liu J; Fukunaga K; Yamamoto H; Nishi K; Miyamoto E
    J Neurosci; 1999 Oct; 19(19):8292-9. PubMed ID: 10493730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning-specific, time-dependent increases in hippocampal Ca2+/calmodulin-dependent protein kinase II activity and AMPA GluR1 subunit immunoreactivity.
    Cammarota M; Bernabeu R; Levi De Stein M; Izquierdo I; Medina JH
    Eur J Neurosci; 1998 Aug; 10(8):2669-76. PubMed ID: 9767396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation of cAMP response element-binding protein in hippocampal neurons as a protective response after exposure to glutamate in vitro and ischemia in vivo.
    Mabuchi T; Kitagawa K; Kuwabara K; Takasawa K; Ohtsuki T; Xia Z; Storm D; Yanagihara T; Hori M; Matsumoto M
    J Neurosci; 2001 Dec; 21(23):9204-13. PubMed ID: 11717354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A role of Ca2+/calmodulin-dependent protein kinase II in the induction of long-term potentiation in hippocampal CA1 area.
    Miyamoto E; Fukunaga K
    Neurosci Res; 1996 Jan; 24(2):117-22. PubMed ID: 8929917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. L-Type Ca(2+) channels are essential for glutamate-mediated CREB phosphorylation and c-fos gene expression in striatal neurons.
    Rajadhyaksha A; Barczak A; MacĂ­as W; Leveque JC; Lewis SE; Konradi C
    J Neurosci; 1999 Aug; 19(15):6348-59. PubMed ID: 10414964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model of the roles of essential kinases in the induction and expression of late long-term potentiation.
    Smolen P; Baxter DA; Byrne JH
    Biophys J; 2006 Apr; 90(8):2760-75. PubMed ID: 16415049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation.
    Barria A; Muller D; Derkach V; Griffith LC; Soderling TR
    Science; 1997 Jun; 276(5321):2042-5. PubMed ID: 9197267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitogen-activated protein kinase regulates early phosphorylation and delayed expression of Ca2+/calmodulin-dependent protein kinase II in long-term potentiation.
    Giovannini MG; Blitzer RD; Wong T; Asoma K; Tsokas P; Morrison JH; Iyengar R; Landau EM
    J Neurosci; 2001 Sep; 21(18):7053-62. PubMed ID: 11549715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Molecular mechanisms of long-term potentiation in hihhocampus].
    Miyamoto E; Fukunaga K
    Tanpakushitsu Kakusan Koso; 2004 Feb; 49(3 Suppl):391-7. PubMed ID: 14976761
    [No Abstract]   [Full Text] [Related]  

  • 20. Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors.
    Derkach V; Barria A; Soderling TR
    Proc Natl Acad Sci U S A; 1999 Mar; 96(6):3269-74. PubMed ID: 10077673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.