BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 16799548)

  • 1. Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates.
    Medintz IL; Clapp AR; Brunel FM; Tiefenbrunn T; Uyeda HT; Chang EL; Deschamps JR; Dawson PE; Mattoussi H
    Nat Mater; 2006 Jul; 5(7):581-9. PubMed ID: 16799548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Luminescent quantum dots fluorescence resonance energy transfer-based probes for enzymatic activity and enzyme inhibitors.
    Shi L; Rosenzweig N; Rosenzweig Z
    Anal Chem; 2007 Jan; 79(1):208-14. PubMed ID: 17194141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum dot peptide biosensors for monitoring caspase 3 proteolysis and calcium ions.
    Prasuhn DE; Feltz A; Blanco-Canosa JB; Susumu K; Stewart MH; Mei BC; Yakovlev AV; Loukov C; Mallet JM; Oheim M; Dawson PE; Medintz IL
    ACS Nano; 2010 Sep; 4(9):5487-97. PubMed ID: 20822159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy transfer-based multiplexed assay of proteases by using gold nanoparticle and quantum dot conjugates on a surface.
    Kim YP; Oh YH; Oh E; Ko S; Han MK; Kim HS
    Anal Chem; 2008 Jun; 80(12):4634-41. PubMed ID: 18457412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative measurement of proteolytic rates with quantum dot-peptide substrate conjugates and Förster resonance energy transfer.
    Wu M; Petryayeva E; Medintz IL; Algar WR
    Methods Mol Biol; 2014; 1199():215-39. PubMed ID: 25103812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein kinase-actuated resonance energy transfer in quantum dot--peptide conjugates.
    Ghadiali JE; Cohen BE; Stevens MM
    ACS Nano; 2010 Aug; 4(8):4915-9. PubMed ID: 20731464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembly of a concentric Förster resonance energy transfer relay on a quantum dot scaffold: characterization and application to multiplexed protease sensing.
    Algar WR; Ancona MG; Malanoski AP; Susumu K; Medintz IL
    ACS Nano; 2012 Dec; 6(12):11044-58. PubMed ID: 23215458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiplex sensing of protease and kinase enzyme activity via orthogonal coupling of quantum dot-peptide conjugates.
    Lowe SB; Dick JA; Cohen BE; Stevens MM
    ACS Nano; 2012 Jan; 6(1):851-7. PubMed ID: 22148227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring botulinum neurotoxin a activity with peptide-functionalized quantum dot resonance energy transfer sensors.
    Sapsford KE; Granek J; Deschamps JR; Boeneman K; Blanco-Canosa JB; Dawson PE; Susumu K; Stewart MH; Medintz IL
    ACS Nano; 2011 Apr; 5(4):2687-99. PubMed ID: 21361387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplexed tracking of protease activity using a single color of quantum dot vector and a time-gated Förster resonance energy transfer relay.
    Algar WR; Malanoski AP; Susumu K; Stewart MH; Hildebrandt N; Medintz IL
    Anal Chem; 2012 Nov; 84(22):10136-46. PubMed ID: 23128345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial control of cells, peptide delivery and dynamic monitoring of cellular physiology with chitosan-assisted dual color quantum dot FRET peptides.
    Fu RH; Liu SP; Ou CW; Huang CM; Wang YC
    Acta Biomater; 2010 Sep; 6(9):3621-9. PubMed ID: 20215055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single quantum dot based nanosensor for renin assay.
    Long Y; Zhang LF; Zhang Y; Zhang CY
    Anal Chem; 2012 Oct; 84(20):8846-52. PubMed ID: 23003565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer.
    Lu H; Schöps O; Woggon U; Niemeyer CM
    J Am Chem Soc; 2008 Apr; 130(14):4815-27. PubMed ID: 18338889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing.
    Algar WR; Wegner D; Huston AL; Blanco-Canosa JB; Stewart MH; Armstrong A; Dawson PE; Hildebrandt N; Medintz IL
    J Am Chem Soc; 2012 Jan; 134(3):1876-91. PubMed ID: 22220737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting kallikrein proteolytic activity with peptide-quantum dot nanosensors.
    Breger JC; Sapsford KE; Ganek J; Susumu K; Stewart MH; Medintz IL
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11529-35. PubMed ID: 25003700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide-based fluorescence resonance energy transfer protease substrates for the detection and diagnosis of Bacillus species.
    Kaman WE; Hulst AG; van Alphen PT; Roffel S; van der Schans MJ; Merkel T; van Belkum A; Bikker FJ
    Anal Chem; 2011 Apr; 83(7):2511-7. PubMed ID: 21370823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and application of quantum dots FRET-based protease sensors.
    Shi L; De Paoli V; Rosenzweig N; Rosenzweig Z
    J Am Chem Soc; 2006 Aug; 128(32):10378-9. PubMed ID: 16895398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiplex charge-transfer interactions between quantum dots and peptide-bridged ruthenium complexes.
    Medintz IL; Farrell D; Susumu K; Trammell SA; Deschamps JR; Brunel FM; Dawson PE; Mattoussi H
    Anal Chem; 2009 Jun; 81(12):4831-9. PubMed ID: 19445483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum dot FRET biosensors that respond to pH, to proteolytic or nucleolytic cleavage, to DNA synthesis, or to a multiplexing combination.
    Suzuki M; Husimi Y; Komatsu H; Suzuki K; Douglas KT
    J Am Chem Soc; 2008 Apr; 130(17):5720-5. PubMed ID: 18393422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-immobilized self-assembled protein-based quantum dot nanoassemblies.
    Sapsford KE; Medintz IL; Golden JP; Deschamps JR; Uyeda HT; Mattoussi H
    Langmuir; 2004 Aug; 20(18):7720-8. PubMed ID: 15323524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.