BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 16799548)

  • 81. Sensing caspase 3 activity with quantum dot-fluorescent protein assemblies.
    Boeneman K; Mei BC; Dennis AM; Bao G; Deschamps JR; Mattoussi H; Medintz IL
    J Am Chem Soc; 2009 Mar; 131(11):3828-9. PubMed ID: 19243181
    [TBL] [Abstract][Full Text] [Related]  

  • 82. A broad-spectrum fluorescence-based peptide library for the rapid identification of protease substrates.
    Thomas DA; Francis P; Smith C; Ratcliffe S; Ede NJ; Kay C; Wayne G; Martin SL; Moore K; Amour A; Hooper NM
    Proteomics; 2006 Apr; 6(7):2112-20. PubMed ID: 16479534
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Quantum dots and peptides: a bright future together.
    Zhou M; Ghosh I
    Biopolymers; 2007; 88(3):325-39. PubMed ID: 17167795
    [TBL] [Abstract][Full Text] [Related]  

  • 84. A high sensitive and specific QDs FRET bioprobe for MNase.
    Huang S; Xiao Q; He ZK; Liu Y; Tinnefeld P; Su XR; Peng XN
    Chem Commun (Camb); 2008 Dec; (45):5990-2. PubMed ID: 19030562
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Positively charged compact quantum Dot-DNA complexes for detection of nucleic acids.
    Lee J; Choi Y; Kim J; Park E; Song R
    Chemphyschem; 2009 Mar; 10(5):806-11. PubMed ID: 19253931
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Systematic identification of substrates for profiling of secreted proteases from Aspergillus species.
    Schaal R; Kupfahl C; Buchheidt D; Neumaier M; Findeisen P
    J Microbiol Methods; 2007 Nov; 71(2):93-100. PubMed ID: 17707935
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Quantum dot-based fluorescence resonance energy transfer with improved FRET efficiency in capillary flows.
    Zhang CY; Johnson LW
    Anal Chem; 2006 Aug; 78(15):5532-7. PubMed ID: 16878892
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Creating self-illuminating quantum dot conjugates.
    So MK; Loening AM; Gambhir SS; Rao J
    Nat Protoc; 2006; 1(3):1160-4. PubMed ID: 17406398
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Toward single-metal-ion sensing by Förster resonance energy transfer.
    Sutter JU; Macmillan AM; Birch DJ; Rolinski OJ
    Ann N Y Acad Sci; 2008; 1130():62-7. PubMed ID: 18596333
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Spatial orientation of mitochondrial processing peptidase and a preprotein revealed by fluorescence resonance energy transfer.
    Nishino TG; Kitano K; Kojima K; Ogishima T; Ito A; Kitada S
    J Biochem; 2007 Jun; 141(6):889-95. PubMed ID: 17426154
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Development of an open sandwich fluoroimmunoassay based on fluorescence resonance energy transfer.
    Wei Q; Lee M; Yu X; Lee EK; Seong GH; Choo J; Cho YW
    Anal Biochem; 2006 Nov; 358(1):31-7. PubMed ID: 16989766
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Monitoring Enzymatic Proteolysis Using Either Enzyme- or Substrate-Bioconjugated Quantum Dots.
    Díaz SA; Breger JC; Medintz IL
    Methods Enzymol; 2016; 571():19-54. PubMed ID: 27112393
    [TBL] [Abstract][Full Text] [Related]  

  • 93. FRET evidence that an isoform of caspase-7 binds but does not cleave its substrate.
    Li IT; Pham E; Chiang JJ; Truong K
    Biochem Biophys Res Commun; 2008 Aug; 373(2):325-9. PubMed ID: 18571498
    [TBL] [Abstract][Full Text] [Related]  

  • 94. A continuous assay for foot-and-mouth disease virus 3C protease activity.
    Jaulent AM; Fahy AS; Knox SR; Birtley JR; Roqué-Rosell N; Curry S; Leatherbarrow RJ
    Anal Biochem; 2007 Sep; 368(2):130-7. PubMed ID: 17631855
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Controlled stoichiometric synthesis of DNA-quantum dot conjugates using Ni-mediated coordination chemistry.
    Kwon H; Hong S; Kim H; Choi Y; Kim J; Song R
    Chem Commun (Camb); 2010 Dec; 46(47):8959-61. PubMed ID: 20976317
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Quantitative understanding of the energy transfer between fluorescent proteins connected via flexible peptide linkers.
    Evers TH; van Dongen EM; Faesen AC; Meijer EW; Merkx M
    Biochemistry; 2006 Nov; 45(44):13183-92. PubMed ID: 17073440
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Fluorescence-emission control of single CdSe nanocrystals using gold-modified AFM tips.
    Eckel R; Walhorn V; Pelargus C; Martini J; Enderlein J; Nann T; Anselmetti D; Ros R
    Small; 2007 Jan; 3(1):44-9. PubMed ID: 17294466
    [No Abstract]   [Full Text] [Related]  

  • 98. DNA sequence-directed assembly of two peptide bioconjugates.
    Thompson M
    Bioorg Chem; 2006 Oct; 34(5):235-47. PubMed ID: 16887165
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Multidentate surface ligand exchange for the immobilization of CdSe/ZnS quantum dots and surface quantum dot-oligonucleotide conjugates.
    Algar WR; Krull UJ
    Langmuir; 2008 May; 24(10):5514-20. PubMed ID: 18412378
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Acceleration of proteolytic activity associated with selection of thiol ligand coatings on quantum dots.
    Wu M; Algar WR
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2535-45. PubMed ID: 25607728
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.