BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 16799548)

  • 101. A time-resolved, internally quenched fluorescence assay to characterize inhibition of hepatitis C virus nonstructural protein 3-4A protease at low enzyme concentrations.
    Mao SS; DiMuzio J; McHale C; Burlein C; Olsen D; Carroll SS
    Anal Biochem; 2008 Feb; 373(1):1-8. PubMed ID: 18022380
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Multiplexed DNA and Protease Detection with Orthogonal Energy Transfer on a Single Quantum Dot Scaffolded Biosensor.
    Hastman DA; Hooe S; Chiriboga M; Díaz SA; Susumu K; Stewart MH; Green CM; Hildebrandt N; Medintz IL
    ACS Sens; 2024 Jan; 9(1):157-170. PubMed ID: 38160434
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Transducing Protease Activity into DNA Output for Developing Smart Bionanosensors.
    Bui H; Brown CW; Buckhout-White S; Díaz SA; Stewart MH; Susumu K; Oh E; Ancona MG; Goldman ER; Medintz IL
    Small; 2019 Apr; 15(14):e1805384. PubMed ID: 30803148
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Bait and Cleave: Exosite-Binding Peptides on Quantum Dots Selectively Accelerate Protease Activity for Sensing with Enhanced Sensitivity.
    Krause KD; Rees K; Darwish GH; Bernal-Escalante J; Algar WR
    ACS Nano; 2024 Jul; 18(26):17018-17030. PubMed ID: 38845136
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Radiolabeled biotinyl peptides as useful reagents for the study of proteolytic enzymes.
    Basak A; Boudreault A; Jean F; Chrétien M; Lazure C
    Anal Biochem; 1993 Mar; 209(2):306-14. PubMed ID: 8470802
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Biophotonic logic devices based on quantum dots and temporally-staggered Förster energy transfer relays.
    Claussen JC; Algar WR; Hildebrandt N; Susumu K; Ancona MG; Medintz IL
    Nanoscale; 2013 Dec; 5(24):12156-70. PubMed ID: 24056977
    [TBL] [Abstract][Full Text] [Related]  

  • 107. A quantum-dot-based molecular ruler for multiplexed optical analysis.
    Morgner F; Geissler D; Stufler S; Butlin NG; Löhmannsröben HG; Hildebrandt N
    Angew Chem Int Ed Engl; 2010 Oct; 49(41):7570-4. PubMed ID: 20806303
    [No Abstract]   [Full Text] [Related]  

  • 108. Quantitative kinetics of proteolytic enzymes determined by a surface concentration-based assay using peptide arrays.
    Jung SH; Kong DH; Park SW; Kim YM; Ha KS
    Analyst; 2012 Aug; 137(16):3814-20. PubMed ID: 22768390
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Probing Multivalent Protein-Carbohydrate Interactions by Quantum Dot-Förster Resonance Energy Transfer.
    Guo Y; Bruce Turnbull W; Zhou D
    Methods Enzymol; 2018; 598():71-100. PubMed ID: 29306444
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Optimization and Changes in the Mode of Proteolytic Turnover of Quantum Dot-Peptide Substrate Conjugates through Moderation of Interfacial Adsorption.
    Petryayeva E; Jeen T; Algar WR
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30359-30372. PubMed ID: 28846381
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Three distinct read-out modes for enzyme activity can operate in a semi-wet supramolecular hydrogel.
    Tamaru S; Kiyonaka S; Hamachi I
    Chemistry; 2005 Dec; 11(24):7294-304. PubMed ID: 16196071
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Reduction of proteolytic breakdown in microbial homogenates.
    Hedman P; Gustafsson JG
    Dev Biol Stand; 1985; 59():31-9. PubMed ID: 3891464
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Highly adaptable and sensitive protease assay based on fluorescence resonance energy transfer.
    Zauner T; Berger-Hoffmann R; Müller K; Hoffmann R; Zuchner T
    Anal Chem; 2011 Oct; 83(19):7356-63. PubMed ID: 21892820
    [TBL] [Abstract][Full Text] [Related]  

  • 114. [Fluorescent substrates of proteolytic enzymes with internal quenching of fluorescence].
    Gershkovich AA
    Ukr Biokhim Zh (1978); 1994; 66(1):10-29. PubMed ID: 7974830
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Quantum dot biosensors for ultrasensitive multiplexed diagnostics.
    Geissler D; Charbonnière LJ; Ziessel RF; Butlin NG; Löhmannsröben HG; Hildebrandt N
    Angew Chem Int Ed Engl; 2010 Feb; 49(8):1396-401. PubMed ID: 20108296
    [No Abstract]   [Full Text] [Related]  

  • 116. Peptide-mediated constructs of quantum dot nanocomposites for enzymatic control of nonradiative energy transfer.
    Seker UO; Ozel T; Demir HV
    Nano Lett; 2011 Apr; 11(4):1530-9. PubMed ID: 21428276
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Multienzyme detection and in-situ monitoring of enzyme activity by bending CE using quantum dots-based polypeptide substrate.
    Qiu L; Cui P; Zhu Z; Xu M; Jia W; Sheng J; Ni X; Zhou S; Wang J
    Electrophoresis; 2020 Jun; 41(12):1103-1108. PubMed ID: 32091140
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Protease sensing using nontoxic silicon quantum dots.
    Cheng X; McVey BFP; Robinson AB; Longatte G; O'Mara PB; Tan VTG; Thordarson P; Tilley RD; Gaus K; Justin Gooding J
    J Biomed Opt; 2017 Aug; 22(8):1-7. PubMed ID: 28836415
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Terbium-to-quantum dot Förster resonance energy transfer for homogeneous and sensitive detection of histone methyltransferase activity.
    Hallaj T; Amjadi M; Qiu X; Susumu K; Medintz IL; Hildebrandt N
    Nanoscale; 2020 Jul; 12(25):13719-13730. PubMed ID: 32573632
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Mimicking Cell Surface Enhancement of Protease Activity on the Surface of a Quantum Dot Nanoparticle.
    Jeen T; Algar WR
    Bioconjug Chem; 2018 Nov; 29(11):3783-3792. PubMed ID: 30362700
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.