These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 16799663)

  • 21. Derivation of optical constants of metals from thin-film measurements at oblique incidence.
    Nestell JE; Christy RW
    Appl Opt; 1972 Mar; 11(3):643-51. PubMed ID: 20111561
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of substrate on radiative properties of thin films.
    Armaly BF; Look DC
    Appl Opt; 1973 Aug; 12(8):1904-8. PubMed ID: 20125629
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determination of layer thickness and optical constants of thin films by using a modified pattern search method.
    Miloua R; Kebbab Z; Chiker F; Sahraoui K; Khadraoui M; Benramdane N
    Opt Lett; 2012 Feb; 37(4):449-51. PubMed ID: 22344069
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Infrared optical constant determination of weakly absorbing dielectric thin films.
    Mouchart J; Begel J; Clément C
    Appl Opt; 1992 Mar; 31(7):885-97. PubMed ID: 20720697
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of substrate absorption on the optical and geometrical characterization of thin dielectric films.
    González-Leal JM; Prieto-Alcón R; Angel JA; Minkov DA; Márquez E
    Appl Opt; 2002 Dec; 41(34):7300-8. PubMed ID: 12477122
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determination of the refractive index and thickness of a thin film embedded in a given stratified medium.
    Chabrier G; Goudonnet JP; Vernier P
    Appl Opt; 1989 Jul; 28(14):2907-10. PubMed ID: 20555620
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determination of optical constants of absorbing materials using transmission and reflection of thin films on partially metallized substrates: analysis of the new (T,R(m)) technique.
    Hjortsberg A
    Appl Opt; 1981 Apr; 20(7):1254-63. PubMed ID: 20309294
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extracting film thickness and optical constants from spectrophotometric data by evolutionary optimization.
    Dutta R; Tian SIP; Liu Z; Lakshminarayanan M; Venkataraj S; Cheng Y; Bash D; Chellappan V; Buonassisi T; Jayavelu S
    PLoS One; 2022; 17(11):e0276555. PubMed ID: 36449457
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optical factors in the photoemission of thin films.
    Ramberg EG
    Appl Opt; 1967 Dec; 6(12):2163-70. PubMed ID: 20062380
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optical constants in the IR from thin film interference and reflectance: the reststrahlen region of muscovite mica.
    Singleton EB; Shirkey CT
    Appl Opt; 1983 Jan; 22(1):185-9. PubMed ID: 18195767
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optical analysis of absorbing thin films: application to ternary chalcopyrite semiconductors.
    Hernández-Rojas JL; Lucĺa ML; Mátil I; González-Díaz G; Santamaría J; Sánchez-Quesada F
    Appl Opt; 1992 Apr; 31(10):1606-11. PubMed ID: 20720795
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimation of the thickness and the optical parameters of several stacked thin films using optimization.
    Andrade R; Birgin EG; Chambouleyron I; Martínez JM; Ventura SD
    Appl Opt; 2008 Oct; 47(28):5208-20. PubMed ID: 18830313
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simultaneous determination of optical constants, thickness, and surface roughness of thin film from spectrophotometric measurements.
    Guo C; Kong M; Gao W; Li B
    Opt Lett; 2013 Jan; 38(1):40-2. PubMed ID: 23282831
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optical characterization of nonabsorbing and weakly absorbing thin films with the wavelengths related to extrema in spectral reflectances.
    Ohlídal I; Franta D; Ohlídal M; Navrátil K
    Appl Opt; 2001 Nov; 40(31):5711-7. PubMed ID: 18364860
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Shadow-angle method for anisotropic and weakly absorbing films.
    Surdutovich G; Vitlina R; Baranauskas V
    Appl Opt; 1999 Jul; 38(19):4164-71. PubMed ID: 18323897
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toward maximum transmittance into absorption layers in solar cells: investigation of lossy-film-induced mismatches between reflectance and transmittance extrema.
    Chang YJ; Lai CS
    Opt Lett; 2013 Sep; 38(17):3257-60. PubMed ID: 23988928
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical constants of thin silicon films near the silicon L(2,3) absorption edge.
    Seely JF; Hunter WR; Rife JC; Kowalski MP
    Appl Opt; 1992 Dec; 31(34):7367-70. PubMed ID: 20802608
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Method for the determination of optical constants of thin films: dependence on experimental uncertainties.
    Del Pozo JM; Díaz L
    Appl Opt; 1992 Aug; 31(22):4474-81. PubMed ID: 20725444
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thickness dispersion of surface plasmon of Ag nano-thin films: determination by ellipsometry iterated with transmittance method.
    Gong J; Dai R; Wang Z; Zhang Z
    Sci Rep; 2015 Mar; 5():9279. PubMed ID: 25797217
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determination of optical constants of thin film from reflectance spectra.
    Lévêque G; Villachon-Renard Y
    Appl Opt; 1990 Aug; 29(22):3207-12. PubMed ID: 20567400
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.