These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 16799670)

  • 1. Determination of the optical constants (n and k) of inhomogeneous thin films with linear index profiles.
    Al-Kuhaili MF; Khawaja EE; Durrani SM
    Appl Opt; 2006 Jul; 45(19):4591-7. PubMed ID: 16799670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytical method of determining optical constants of a weakly absorbing thin film.
    Zheng Y; Kikuchi K
    Appl Opt; 1997 Sep; 36(25):6325-8. PubMed ID: 18259484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Problem of ambiguity in the determination of optical constants of thin absorbing films from spectroscopic reflectance and transmittance measurements.
    Lamprecht K; Papousek W; Leising G
    Appl Opt; 1997 Sep; 36(25):6364-71. PubMed ID: 18259490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the fundamental absorption and optical bandgap of dielectric thin films from single optical transmittance measurements.
    Tejada A; Montañez L; Torres C; Llontop P; Flores L; De Zela F; Winnacker A; Guerra JA
    Appl Opt; 2019 Dec; 58(35):9585-9594. PubMed ID: 31873557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of thickness influence on refractive index and absorption coefficient of zinc selenide thin films.
    Georgescu G; Petris A
    Opt Express; 2019 Nov; 27(24):34803-34823. PubMed ID: 31878662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of optical parameters and thickness of weakly absorbing thin films from reflectance and transmittance spectra.
    Kutavichus VP; Filippov VV; Huzouski VH
    Appl Opt; 2006 Jul; 45(19):4547-53. PubMed ID: 16799663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical characterization of dielectric and semiconductor thin films by use of transmission data.
    Cisneros JI
    Appl Opt; 1998 Aug; 37(22):5262-70. PubMed ID: 18286005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of errors in thin-film optical parameters derived from spectrophotometric measurements at normal light incidence.
    Konstantinov I; Babeva T; Kitova S
    Appl Opt; 1998 Jul; 37(19):4260-7. PubMed ID: 18285873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Derivation of optical constants of metals from thin-film measurements at oblique incidence.
    Nestell JE; Christy RW
    Appl Opt; 1972 Mar; 11(3):643-51. PubMed ID: 20111561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic ellipsometry of inhomogeneous thin films exhibiting thickness non-uniformity and transition layers.
    Ohlídal I; Vohánka J; Buršíková V; Franta D; Čermák M
    Opt Express; 2020 Jan; 28(1):160-174. PubMed ID: 32118947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the optical constants (n, k) of thin dielectric films.
    Khawaja EE; Bouamrane F
    Appl Opt; 1993 Mar; 32(7):1168-72. PubMed ID: 20820248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of optical constants of thin films and multilayer stacks by use of concurrent reflectance, transmittance, and ellipsometric measurements.
    Peng C; Liang R; Erwin JK; Bletscher W; Nagata K; Mansuripur M
    Appl Opt; 2001 Oct; 40(28):5088-99. PubMed ID: 18364789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photometric methods for determining the optical constants and the thicknesses of thin absorbing films: criteria for precise and unambiguous determination of n, k, and d in a wide spectral range.
    Babeva T; Kitova S; Konstantinov I
    Appl Opt; 2001 Jun; 40(16):2682-6. PubMed ID: 18357284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of Optical Constants of Solgel-Derived Inhomogeneous TiO(2) Thin Films by Spectroscopic Ellipsometry and Transmission Spectroscopy.
    Mosaddeq-Ur-Rahman M; Yu G; Krishna KM; Soga T; Watanabe J; Jimbo T; Umeno M
    Appl Opt; 1998 Feb; 37(4):691-7. PubMed ID: 18268642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational method for determining n and k for a thin film from the measured reflectance, transmittance, and film thickness.
    Bennett JM; Booty MJ
    Appl Opt; 1966 Jan; 5(1):41-3. PubMed ID: 20048783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ellipsometric characterization of inhomogeneous thin films with complicated thickness non-uniformity: application to inhomogeneous polymer-like thin films.
    Ohlídal I; Vohánka J; Buršíková V; Šulc V; Šustek Š; Ohlídal M
    Opt Express; 2020 Nov; 28(24):36796-36811. PubMed ID: 33379765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Method for the determination of optical constants of thin films: dependence on experimental uncertainties.
    Del Pozo JM; Díaz L
    Appl Opt; 1992 Aug; 31(22):4474-81. PubMed ID: 20725444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Closed equation for the normal incidence reflectance of thin films on absorbing substrates.
    Vargas WE; Castro D
    Appl Opt; 2007 Feb; 46(4):502-5. PubMed ID: 17230242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic determination of the optical constants of inhomogeneous thin films.
    Borgogno JP; Lazarides B; Pelletier E
    Appl Opt; 1982 Nov; 21(22):4020-9. PubMed ID: 20401002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous determination of optical constants, thickness, and surface roughness of thin film from spectrophotometric measurements.
    Guo C; Kong M; Gao W; Li B
    Opt Lett; 2013 Jan; 38(1):40-2. PubMed ID: 23282831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.