These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 16799829)

  • 1. Computational simulations of the human magneto- and electroenterogram.
    Lin AS; Buist ML; Cheng LK; Smith NP; Pullan AJ
    Ann Biomed Eng; 2006 Aug; 34(8):1322-31. PubMed ID: 16799829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of the slow wave component of the electroenterogram from Laplacian abdominal surface recordings in humans.
    Prats-Boluda G; Garcia-Casado J; Martinez-de-Juan JL; Ponce JL
    Physiol Meas; 2007 Sep; 28(9):1115-33. PubMed ID: 17827658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling slow wave activity in the small intestine.
    Lin AS; Buist ML; Smith NP; Pullan AJ
    J Theor Biol; 2006 Sep; 242(2):356-62. PubMed ID: 16626759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling gastrointestinal bioelectric activity.
    Pullan A; Cheng L; Yassi R; Buist M
    Prog Biophys Mol Biol; 2004; 85(2-3):523-50. PubMed ID: 15142760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dependent component analysis for the magnetogastrographic detection of human electrical response activity.
    Estombelo-Montesco CA; de Araujo DB; Silva Filho AC; Moraes ER; Barros AK; Wakai RT; Baffa O
    Physiol Meas; 2007 Sep; 28(9):1029-44. PubMed ID: 17827651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A spatio-temporal dipole simulation of gastrointestinal magnetic fields.
    Bradshaw LA; Myers A; Wikswo JP; Richards WO
    IEEE Trans Biomed Eng; 2003 Jul; 50(7):836-47. PubMed ID: 12848351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artifact reduction in magnetogastrography using fast independent component analysis.
    Irimia A; Bradshaw LA
    Physiol Meas; 2005 Dec; 26(6):1059-73. PubMed ID: 16311453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mathematical model of pacemaker activity recorded from mouse small intestine.
    Youm JB; Kim N; Han J; Kim E; Joo H; Leem CH; Goto G; Noma A; Earm YE
    Philos Trans A Math Phys Eng Sci; 2006 May; 364(1842):1135-54. PubMed ID: 16608700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noninvasive measurement and analysis of intestinal myoelectrical activity using surface electrodes.
    Garcia-Casado J; Martinez-de-Juan JL; Ponce JL
    IEEE Trans Biomed Eng; 2005 Jun; 52(6):983-91. PubMed ID: 15977728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulation of motility patterns of the small bowel. 1. formulation of a mathematical model.
    Miftakhov RN; Abdusheva GR; Christensen J
    J Theor Biol; 1999 Mar; 197(1):89-112. PubMed ID: 10036210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive filtering of ECG interference on surface EEnGs based on signal averaging.
    Garcia-Casado J; Martinez-de-Juan JL; Ponce JL
    Physiol Meas; 2006 Jun; 27(6):509-27. PubMed ID: 16603800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small bowel motility: relationship between smooth muscle contraction and electroenterogram signal.
    Martinez-de-Juan JL; Saiz J; Meseguer M; Ponce JL
    Med Eng Phys; 2000 Apr; 22(3):189-99. PubMed ID: 10964039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Normal and abnormal electrical propagation in the small intestine.
    Lammers WJ
    Acta Physiol (Oxf); 2015 Feb; 213(2):349-59. PubMed ID: 25156937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-source modeling and estimation using biomagnetic measurements.
    Yetik IS; Nehorai A; Muravchik CH; Haueisen J; Eiselt M
    IEEE Trans Biomed Eng; 2006 Oct; 53(10):1872-82. PubMed ID: 17019850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The detection of intestinal spike activity on surface electroenterograms.
    Ye-Lin Y; Garcia-Casado J; Martinez-de-Juan JL; Prats-Boluda G; Ponce JL
    Phys Med Biol; 2010 Feb; 55(3):663-80. PubMed ID: 20071756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiscale modelling of human gastric electric activity: can the electrogastrogram detect functional electrical uncoupling?
    Buist ML; Cheng LK; Sanders KM; Pullan AJ
    Exp Physiol; 2006 Mar; 91(2):383-90. PubMed ID: 16407476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The single nerve fiber action potential and the filter bank--a modeling approach.
    Struijk LN; Akay M; Struijk JJ
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):372-5. PubMed ID: 18232387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Electric activity of the small intestine in man].
    Lanfranchi GA
    Minerva Med; 1974 Feb; 65(11):620-3. PubMed ID: 4819400
    [No Abstract]   [Full Text] [Related]  

  • 19. Spatiotemporal electrical and motility mapping of distension-induced propagating oscillations in the murine small intestine.
    Seerden TC; Lammers WJ; De Winter BY; De Man JG; Pelckmans PA
    Am J Physiol Gastrointest Liver Physiol; 2005 Dec; 289(6):G1043-51. PubMed ID: 16099869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomagnetic characterization of spatiotemporal parameters of the gastric slow wave.
    Bradshaw LA; Irimia A; Sims JA; Gallucci MR; Palmer RL; Richards WO
    Neurogastroenterol Motil; 2006 Aug; 18(8):619-31. PubMed ID: 16918726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.