These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 16799830)

  • 1. Computational approach to estimating the effects of blood properties on changes in intra-stent flow.
    Benard N; Perrault R; Coisne D
    Ann Biomed Eng; 2006 Aug; 34(8):1259-71. PubMed ID: 16799830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rheological effects of blood in a nonplanar distal end-to-side anastomosis.
    Wang QQ; Ping BH; Xu QB; Wang W
    J Biomech Eng; 2008 Oct; 130(5):051009. PubMed ID: 19045516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical investigation of the non-Newtonian pulsatile blood flow in a bifurcation model with a non-planar branch.
    Chen J; Lu XY
    J Biomech; 2006; 39(5):818-32. PubMed ID: 16488221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling.
    LaDisa JF; Olson LE; Douglas HA; Warltier DC; Kersten JR; Pagel PS
    Biomed Eng Online; 2006 Jun; 5():40. PubMed ID: 16780592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circumferential vascular deformation after stent implantation alters wall shear stress evaluated with time-dependent 3D computational fluid dynamics models.
    LaDisa JF; Olson LE; Guler I; Hettrick DA; Kersten JR; Warltier DC; Pagel PS
    J Appl Physiol (1985); 2005 Mar; 98(3):947-57. PubMed ID: 15531564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Axial stent strut angle influences wall shear stress after stent implantation: analysis using 3D computational fluid dynamics models of stent foreshortening.
    LaDisa JF; Olson LE; Hettrick DA; Warltier DC; Kersten JR; Pagel PS
    Biomed Eng Online; 2005 Oct; 4():59. PubMed ID: 16250918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate prediction of wall shear stress in a stented artery: newtonian versus non-newtonian models.
    Mejia J; Mongrain R; Bertrand OF
    J Biomech Eng; 2011 Jul; 133(7):074501. PubMed ID: 21823750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The quantification of hemodynamic parameters downstream of a Gianturco Zenith stent wire using newtonian and non-newtonian analog fluids in a pulsatile flow environment.
    Walker AM; Johnston CR; Rival DE
    J Biomech Eng; 2012 Nov; 134(11):111001. PubMed ID: 23387783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical investigation of the non-Newtonian blood flow in a bifurcation model with a non-planar branch.
    Chen J; Lu XY
    J Biomech; 2004 Dec; 37(12):1899-911. PubMed ID: 15519598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-dependent 3D simulations of the hemodynamics in a stented coronary artery.
    Faik I; Mongrain R; Leask RL; Rodes-Cabau J; Larose E; Bertrand O
    Biomed Mater; 2007 Mar; 2(1):S28-37. PubMed ID: 18458417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wall shear stress gradient analysis within an idealized stenosis using non-Newtonian flow.
    Schirmer CM; Malek AM
    Neurosurgery; 2007 Oct; 61(4):853-63; discussion 863-4. PubMed ID: 17986948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental flow studies in an elastic Y-model.
    Mijovic B; Liepsch D
    Technol Health Care; 2003; 11(2):115-41. PubMed ID: 12697953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of stent design parameters on normal artery wall mechanics.
    Bedoya J; Meyer CA; Timmins LH; Moreno MR; Moore JE
    J Biomech Eng; 2006 Oct; 128(5):757-65. PubMed ID: 16995763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical modelling of Newtonian and non-Newtonian representation of blood in a distal end-to-side vascular bypass graft anastomosis.
    O'Callaghan S; Walsh M; McGloughlin T
    Med Eng Phys; 2006 Jan; 28(1):70-4. PubMed ID: 15905113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of different stent designs on local hemodynamics in stented arteries.
    Balossino R; Gervaso F; Migliavacca F; Dubini G
    J Biomech; 2008; 41(5):1053-61. PubMed ID: 18215394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the relative importance of rheology for image-based CFD models of the carotid bifurcation.
    Lee SW; Steinman DA
    J Biomech Eng; 2007 Apr; 129(2):273-8. PubMed ID: 17408332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-Newtonian blood flow in human right coronary arteries: steady state simulations.
    Johnston BM; Johnston PR; Corney S; Kilpatrick D
    J Biomech; 2004 May; 37(5):709-20. PubMed ID: 15047000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study on the compliance of a right coronary artery and its impact on wall shear stress.
    Zeng D; Boutsianis E; Ammann M; Boomsma K; Wildermuth S; Poulikakos D
    J Biomech Eng; 2008 Aug; 130(4):041014. PubMed ID: 18601456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood flow in stented arteries: a parametric comparison of strut design patterns in three dimensions.
    He Y; Duraiswamy N; Frank AO; Moore JE
    J Biomech Eng; 2005 Aug; 127(4):637-47. PubMed ID: 16121534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blood flow dynamics in saccular aneurysm models of the basilar artery.
    Valencia AA; Guzmán AM; Finol EA; Amon CH
    J Biomech Eng; 2006 Aug; 128(4):516-26. PubMed ID: 16813443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.