BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 16800018)

  • 1. Assembly-controlled biocompatible interface on a microchip: strategy to highly efficient proteolysis.
    Liu Y; Zhong W; Meng S; Kong J; Lu H; Yang P; Girault HH; Liu B
    Chemistry; 2006 Aug; 12(25):6585-91. PubMed ID: 16800018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced protein digestion through the confinement of nanozeolite-assembled microchip reactors.
    Ji J; Zhang Y; Zhou X; Kong J; Tang Y; Liu B
    Anal Chem; 2008 Apr; 80(7):2457-63. PubMed ID: 18321132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multilayer-assembled microchip for enzyme immobilization as reactor toward low-level protein identification.
    Liu Y; Lu H; Zhong W; Song P; Kong J; Yang P; Girault HH; Liu B
    Anal Chem; 2006 Feb; 78(3):801-8. PubMed ID: 16448054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization of trypsin in the layer-by-layer coating of graphene oxide and chitosan on in-channel glass fiber for microfluidic proteolysis.
    Bao H; Chen Q; Zhang L; Chen G
    Analyst; 2011 Dec; 136(24):5190-6. PubMed ID: 22013584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zeolite nanoparticle modified microchip reactor for efficient protein digestion.
    Huang Y; Shan W; Liu B; Liu Y; Zhang Y; Zhao Y; Lu H; Tang Y; Yang P
    Lab Chip; 2006 Apr; 6(4):534-9. PubMed ID: 16572216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilization of trypsin on silica-coated fiberglass core in microchip for highly efficient proteolysis.
    Liu T; Wang S; Chen G
    Talanta; 2009 Mar; 77(5):1767-73. PubMed ID: 19159796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold nanoparticle assembly microfluidic reactor for efficient on-line proteolysis.
    Liu Y; Xue Y; Ji J; Chen X; Kong J; Yang P; Girault HH; Liu B
    Mol Cell Proteomics; 2007 Aug; 6(8):1428-36. PubMed ID: 17519226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of microwave-assisted protein digestion based on trypsin-immobilized magnetic microspheres for highly efficient proteolysis followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis.
    Lin S; Lin Z; Yao G; Deng C; Yang P; Zhang X
    Rapid Commun Mass Spectrom; 2007; 21(23):3910-8. PubMed ID: 17990248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast microwave-assisted in-tip digestion of proteins.
    Hahn HW; Rainer M; Ringer T; Huck CW; Bonn GK
    J Proteome Res; 2009 Sep; 8(9):4225-30. PubMed ID: 19639939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trypsin-immobilized fiber core in syringe needle for highly efficient proteolysis.
    Wang S; Chen Z; Yang P; Chen G
    Proteomics; 2008 May; 8(9):1785-8. PubMed ID: 18442168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mass spectrometric analysis of affinity-captured proteins on a dendrimer-based immunosensing surface: investigation of on-chip proteolytic digestion.
    Seok HJ; Hong MY; Kim YJ; Han MK; Lee D; Lee JH; Yoo JS; Kim HS
    Anal Biochem; 2005 Feb; 337(2):294-307. PubMed ID: 15691510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of electrodes in a suction cup-driven microchip for alternating current-accelerated proteolysis.
    Liu T; Bao H; Zhang L; Chen G
    Electrophoresis; 2009 Sep; 30(18):3265-8. PubMed ID: 19705354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microchip-based proteolytic digestion system driven by electroosmotic pumping.
    Jin LJ; Ferrance J; Sanders JC; Landers JP
    Lab Chip; 2003 Feb; 3(1):11-8. PubMed ID: 15100799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A bifunctional monolithic column for combined protein preconcentration and digestion for high throughput proteomics research.
    Zhang K; Wu S; Tang X; Kaiser NK; Bruce JE
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Apr; 849(1-2):223-30. PubMed ID: 17150420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inflation bulb-driven microfluidic reactor for infrared-assisted proteolysis.
    Liu T; Bao H; Chen G
    Electrophoresis; 2010 Sep; 31(18):3070-3. PubMed ID: 20725916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid and efficient proteolysis through laser-assisted immobilized enzyme reactors.
    Zhang P; Gao M; Zhu S; Lei J; Zhang X
    J Chromatogr A; 2011 Nov; 1218(47):8567-71. PubMed ID: 22024345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilization of trypsin on poly(urea-formaldehyde)-coated fiberglass cores in microchip for highly efficient proteolysis.
    Fan H; Bao H; Zhang L; Chen G
    Proteomics; 2011 Aug; 11(16):3420-3. PubMed ID: 21751341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of trypsin immobilized on the functionable alkylthiolate self-assembled monolayers: a preliminary application for trypsin digestion chip on protein identification using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Tyan YC; Liao JD; Jong SB; Liao PC; Yang MH; Chang YW; Klauser R; Himmelhaus M; Grunze M
    J Mater Sci Mater Med; 2005 Feb; 16(2):135-42. PubMed ID: 15744601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual matrix-based immobilized trypsin for complementary proteolytic digestion and fast proteomics analysis with higher protein sequence coverage.
    Fan C; Shi Z; Pan Y; Song Z; Zhang W; Zhao X; Tian F; Peng B; Qin W; Cai Y; Qian X
    Anal Chem; 2014 Feb; 86(3):1452-8. PubMed ID: 24447065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast and efficient proteolysis by microwave-assisted protein digestion using trypsin-immobilized magnetic silica microspheres.
    Lin S; Yao G; Qi D; Li Y; Deng C; Yang P; Zhang X
    Anal Chem; 2008 May; 80(10):3655-65. PubMed ID: 18407620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.