These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 16800499)

  • 1. Mechanisms of oscillations and formation of nano-scale layered structures in induced co-deposition of some iron-group alloys (Ni-P, Ni-W, and Co-W), studied by an in situ electrochemical quartz crystal microbalance technique.
    Sakai S; Nakanishi S; Nakato Y
    J Phys Chem B; 2006 Jun; 110(24):11944-9. PubMed ID: 16800499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Layer-by-layer electrodeposition of copper in the presence of o-phenanthroline, caused by a new type of hidden NDR oscillation with the effective electrode surface area as the key variable.
    Nakanishi S; Sakai S; Nishimura K; Nakato Y
    J Phys Chem B; 2005 Oct; 109(40):18846-51. PubMed ID: 16853425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ STM studies of electrochemical growth of nanostructured Ni films and their anomalous IR properties.
    Wang HC; Sun SG; Yan JW; Yang HZ; Zhou ZY
    J Phys Chem B; 2005 Mar; 109(10):4309-16. PubMed ID: 16851496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical study on the adsorption of carbon oxides and oxidation of their adsorption products on platinum group metals and alloys.
    Siwek H; Lukaszewski M; Czerwiński A
    Phys Chem Chem Phys; 2008 Jul; 10(25):3752-65. PubMed ID: 18563236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macroscopically uniform nanoperiod alloy multilayers formed by coupling of electrodeposition with current oscillations.
    Nakanishi S; Sakai S; Nagai T; Nakato Y
    J Phys Chem B; 2005 Feb; 109(5):1750-5. PubMed ID: 16851154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrodeposition of copper composites from deep eutectic solvents based on choline chloride.
    Abbott AP; El Ttaib K; Frisch G; McKenzie KJ; Ryder KS
    Phys Chem Chem Phys; 2009 Jun; 11(21):4269-77. PubMed ID: 19458829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrodeposition of Al in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ionic liquids: in situ STM and EQCM studies.
    Moustafa EM; El Abedin SZ; Shkurankov A; Zschippang E; Saad AY; Bund A; Endres F
    J Phys Chem B; 2007 May; 111(18):4693-704. PubMed ID: 17388503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition metal containing decatungstosilicate dimer [M(H(2)O)(2)(gamma-SiW(10)O(35))(2)](10-) (M = Mn(2+), Co(2+), Ni(2+)).
    Bassil BS; Dickman MH; Reicke M; Kortz U; Keita B; Nadjo L
    Dalton Trans; 2006 Sep; (35):4253-9. PubMed ID: 16932818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical preparation and structural characterization of Co thin films and their anomalous IR properties.
    Chen QS; Sun SG; Yan JW; Li JT; Zhou ZY
    Langmuir; 2006 Dec; 22(25):10575-83. PubMed ID: 17129032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extending in situ attenuated-total-reflection surface-enhanced infrared absorption spectroscopy to ni electrodes.
    Huo SJ; Xue XK; Yan YG; Li QX; Ma M; Cai WB; Xu QJ; Osawa M
    J Phys Chem B; 2006 Mar; 110(9):4162-9. PubMed ID: 16509710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical processes of nucleation and growth of calcium phosphate on titanium supported by real-time quartz crystal microbalance measurements and X-ray photoelectron spectroscopy analysis.
    Eliaz N; Kopelovitch W; Burstein L; Kobayashi E; Hanawa T
    J Biomed Mater Res A; 2009 Apr; 89(1):270-80. PubMed ID: 18563813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of Electrosorption of Organic Molecules onto Gold and Nickel Electrodes Using an Electrochemical Quartz Crystal Microbalance.
    Zhou A; Xie N
    J Colloid Interface Sci; 1999 Dec; 220(2):281-287. PubMed ID: 10607444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic-scale study of in situ metal nanoparticle synthesis in a Ni/TiO2 system.
    Li P; Liu J; Nag N; Crozier PA
    J Phys Chem B; 2005 Jul; 109(29):13883-90. PubMed ID: 16852742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical oscillation induced periodic swelling and shrinking of a polymeric multilayer investigated with a quartz crystal microbalance.
    Tang Y; Liu G; Yu C; Wei X; Zhang G
    Langmuir; 2008 Aug; 24(16):8929-33. PubMed ID: 18642938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Palladium and the electrochemical quartz crystal microbalance: a new method for the in situ analysis of the precious metal in aqueous solutions.
    Carrington NA; Rodman DL; Xue ZL
    Anal Chim Acta; 2006 Jul; 572(2):303-8. PubMed ID: 17723493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical deposition and characterization of mixed-valent rhenium oxide films prepared from a perrhenate solution.
    Hahn BP; May RA; Stevenson KJ
    Langmuir; 2007 Oct; 23(21):10837-45. PubMed ID: 17854210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrosynthesis of Cu-Se films on copper electrodes in alkaline media: a voltammetric, electrochemical quartz crystal microbalance and I/t transient study.
    Córdova R; López C; Orellana M; Grez P; Schrebler R; Del Río R
    J Phys Chem B; 2005 Mar; 109(8):3212-21. PubMed ID: 16851343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies of the interfacial properties of an electroplated Sn thin film electrode/electrolyte using in situ MFTIRS and EQCM.
    Li JT; Chen SR; Fan XY; Huang L; Sun SG
    Langmuir; 2007 Dec; 23(26):13174-80. PubMed ID: 18020462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic structures of Pt-Co and Pt-Ru alloys for CO-tolerant anode catalysts in polymer electrolyte fuel cells studied by EC-XPS.
    Wakisaka M; Mitsui S; Hirose Y; Kawashima K; Uchida H; Watanabe M
    J Phys Chem B; 2006 Nov; 110(46):23489-96. PubMed ID: 17107203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clarifying the mechanism of reverse structuring during electrodeposition in magnetic gradient fields.
    Tschulik K; Cierpka C; Mutschke G; Gebert A; Schultz L; Uhlemann M
    Anal Chem; 2012 Mar; 84(5):2328-34. PubMed ID: 22360304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.