These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
403 related articles for article (PubMed ID: 16800545)
1. Surfactant-free hydrothermal synthesis of highly tetragonal barium titanate nanowires: a structural investigation. Joshi UA; Yoon S; Baik S; Lee JS J Phys Chem B; 2006 Jun; 110(25):12249-56. PubMed ID: 16800545 [TBL] [Abstract][Full Text] [Related]
2. Crystal structure and the paraelectric-to-ferroelectric phase transition of nanoscale BaTiO3. Smith MB; Page K; Siegrist T; Redmond PL; Walter EC; Seshadri R; Brus LE; Steigerwald ML J Am Chem Soc; 2008 Jun; 130(22):6955-63. PubMed ID: 18461943 [TBL] [Abstract][Full Text] [Related]
3. Low temperature synthesis and characterization of MgO/ZnO composite nanowire arrays. Shimpi P; Gao PX; Goberman DG; Ding Y Nanotechnology; 2009 Mar; 20(12):125608. PubMed ID: 19420477 [TBL] [Abstract][Full Text] [Related]
4. A simple approach to the synthesis of silver nanowires by hydrothermal process in the presence of gemini surfactant. Xu J; Hu J; Peng C; Liu H; Hu Y J Colloid Interface Sci; 2006 Jun; 298(2):689-93. PubMed ID: 16414058 [TBL] [Abstract][Full Text] [Related]
5. Microwave synthesis of noncentrosymmetric BaTiO3 truncated nanocubes for charge storage applications. Swaminathan V; Pramana SS; White TJ; Chen L; Chukka R; Ramanujan RV ACS Appl Mater Interfaces; 2010 Nov; 2(11):3037-42. PubMed ID: 20945870 [TBL] [Abstract][Full Text] [Related]
6. In-situ thermal phase transition and structural investigation of ferroelectric tetragonal barium titanate nanopowders with pseudo-cubic phase. Kim DH; Lee SJ; Theerthagiri J; Choi M; Jung J; Yu Y; Im KS; Jung HJ; Nam SY; Choi MY Chemosphere; 2021 Nov; 283():131218. PubMed ID: 34147976 [TBL] [Abstract][Full Text] [Related]
7. Role of Ti-O bonds in phase transitions of TiO2. Nosheen S; Galasso FS; Suib SL Langmuir; 2009 Jul; 25(13):7623-30. PubMed ID: 19453129 [TBL] [Abstract][Full Text] [Related]
8. Systematic synthesis and characterization of single-crystal lanthanide orthophosphate nanowires. Fang YP; Xu AW; Song RQ; Zhang HX; You LP; Yu JC; Liu HQ J Am Chem Soc; 2003 Dec; 125(51):16025-34. PubMed ID: 14677994 [TBL] [Abstract][Full Text] [Related]
9. Facile hydrothermal synthesis of porous TiO2 nanowire electrodes with high-rate capability for Li ion batteries. Shim HW; Lee DK; Cho IS; Hong KS; Kim DW Nanotechnology; 2010 Jun; 21(25):255706. PubMed ID: 20516576 [TBL] [Abstract][Full Text] [Related]
10. Controlled synthesis of Ag/TiO2 core-shell nanowires with smooth and bristled surfaces via a one-step solution route. Du J; Zhang J; Liu Z; Han B; Jiang T; Huang Y Langmuir; 2006 Jan; 22(3):1307-12. PubMed ID: 16430298 [TBL] [Abstract][Full Text] [Related]
11. Photocatalytic activity of the calcined H-titanate nanowires for photocatalytic oxidation of acetone in air. Yu H; Yu J; Cheng B Chemosphere; 2007 Feb; 66(11):2050-7. PubMed ID: 17109930 [TBL] [Abstract][Full Text] [Related]
12. Template-free hydrothermal synthesis of single-crystalline barium titanate and strontium titanate nanowires. Joshi UA; Lee JS Small; 2005 Dec; 1(12):1172-6. PubMed ID: 17193412 [No Abstract] [Full Text] [Related]
13. Synthesis of ZrO2 nanowires by ionic-liquid route. Dong WS; Lin FQ; Liu CL; Li MY J Colloid Interface Sci; 2009 May; 333(2):734-40. PubMed ID: 19249058 [TBL] [Abstract][Full Text] [Related]
14. Bioactive titanate nanomesh layer on the Ti-based bulk metallic glass by hydrothermal-electrochemical technique. Sugiyama N; Xu H; Onoki T; Hoshikawa Y; Watanabe T; Matsushita N; Wang X; Qin F; Fukuhara M; Tsukamoto M; Abe N; Komizo Y; Inoue A; Yoshimura M Acta Biomater; 2009 May; 5(4):1367-73. PubMed ID: 19022712 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of selenium nanowires morphologically directed by Sinorhizobial oligosaccharides. Lee S; Kwon C; Park B; Jung S Carbohydr Res; 2009 Jul; 344(10):1230-4. PubMed ID: 19439268 [TBL] [Abstract][Full Text] [Related]
16. Combined structural refinement of Bi3.5La0.5Ti3O12 using neutron and X-ray powder diffraction data. Jeon MK; Kim YI; Nahm SH; Woo SI J Phys Chem B; 2005 Jan; 109(2):968-72. PubMed ID: 16866466 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of anatase TiO(2) nanoshuttles by self-sacrificing of titanate nanowires. Wang H; Shao W; Gu F; Zhang L; Lu M; Li C Inorg Chem; 2009 Oct; 48(20):9732-6. PubMed ID: 19764706 [TBL] [Abstract][Full Text] [Related]
18. Silver telluride nanotubes prepared by the hydrothermal method. Qin A; Fang Y; Tao P; Zhang J; Su C Inorg Chem; 2007 Sep; 46(18):7403-9. PubMed ID: 17663544 [TBL] [Abstract][Full Text] [Related]
19. The fabrication of polycrystalline silver nanowires via self-assembled nanotubes at controlled temperature. Liu JH; Tsai CY; Chiu YH; Hsieh FM Nanotechnology; 2009 Jan; 20(3):035301. PubMed ID: 19417290 [TBL] [Abstract][Full Text] [Related]
20. Hydrothermal synthesis and characterization of nanorods of various titanates and titanium dioxide. Kolen'ko YV; Kovnir KA; Gavrilov AI; Garshev AV; Frantti J; Lebedev OI; Churagulov BR; Van Tendeloo G; Yoshimura M J Phys Chem B; 2006 Mar; 110(9):4030-8. PubMed ID: 16509693 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]