BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

580 related articles for article (PubMed ID: 16800612)

  • 1. Ultrafast heme dynamics in ferrous versus ferric cytochrome c studied by time-resolved resonance Raman and transient absorption spectroscopy.
    Negrerie M; Cianetti S; Vos MH; Martin JL; Kruglik SG
    J Phys Chem B; 2006 Jun; 110(25):12766-81. PubMed ID: 16800612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photodissociation of heme distal methionine in ferrous cytochrome C revealed by subpicosecond time-resolved resonance Raman spectroscopy.
    Cianetti S; Négrerie M; Vos MH; Martin JL; Kruglik SG
    J Am Chem Soc; 2004 Nov; 126(43):13932-3. PubMed ID: 15506748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast proteinquake dynamics in cytochrome c.
    Zang C; Stevens JA; Link JJ; Guo L; Wang L; Zhong D
    J Am Chem Soc; 2009 Mar; 131(8):2846-52. PubMed ID: 19203189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural changes and picosecond to second dynamics of cytochrome c in interaction with nitric oxide in ferrous and ferric redox states.
    Kruglik SG; Yoo BK; Lambry JC; Martin JL; Negrerie M
    Phys Chem Chem Phys; 2017 Aug; 19(32):21317-21334. PubMed ID: 28759066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bis-methionine ligation to heme iron in mutants of cytochrome b562. 2. Characterization by NMR of heme-ligand interactions.
    Barker PD; Freund SM
    Biochemistry; 1996 Oct; 35(42):13627-35. PubMed ID: 8885842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Femtosecond UV studies of the electronic relaxation processes in Cytochrome c.
    Bräm O; Consani C; Cannizzo A; Chergui M
    J Phys Chem B; 2011 Nov; 115(46):13723-30. PubMed ID: 22004429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. State preparation and excited electronic and vibrational behavior in hemes.
    Challa JR; Gunaratne TC; Simpson MC
    J Phys Chem B; 2006 Oct; 110(40):19956-65. PubMed ID: 17020382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron transfer in tetrahemic cytochromes c3: spectroelectrochemical evidence for a conformational change triggered by heme IV reduction.
    Kazanskaya I; Lexa D; Bruschi M; Chottard G
    Biochemistry; 1996 Oct; 35(41):13411-8. PubMed ID: 8873609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 1H NMR structural characterization of the cytochrome c modifications in a micellar environment.
    Chevance S; Le Rumeur E; de Certaines JD; Simonneaux G; Bondon A
    Biochemistry; 2003 Dec; 42(51):15342-51. PubMed ID: 14690444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geminate carbon monoxide rebinding to a c-type haem.
    Silkstone G; Jasaitis A; Vos MH; Wilson MT
    Dalton Trans; 2005 Nov; (21):3489-94. PubMed ID: 16234930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct observation of the low-spin Fe(III)-NO(radical) intermediate state during rebinding of NO to photodeligated ferric cytochrome c.
    Park J; Lee T; Lim M
    J Phys Chem B; 2013 Oct; 117(40):12039-50. PubMed ID: 24041332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CO photodissociation dynamics in cytochrome P450BM3 studied by subpicosecond visible and mid-infrared spectroscopy.
    Rupenyan A; Commandeur J; Groot ML
    Biochemistry; 2009 Jul; 48(26):6104-10. PubMed ID: 19492790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of electron-withdrawing group effects on heme binding in designed proteins: implications for heme a in cytochrome c oxidase.
    Zhuang J; Amoroso JH; Kinloch R; Dawson JH; Baldwin MJ; Gibney BR
    Inorg Chem; 2006 Jun; 45(12):4685-94. PubMed ID: 16749832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model for the misfolded bis-His intermediate of cytochrome c: the 1-56 N-fragment.
    Santoni E; Scatragli S; Sinibaldi F; Fiorucci L; Santucci R; Smulevich G
    J Inorg Biochem; 2004 Jun; 98(6):1067-77. PubMed ID: 15149817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Configurational changes of heme followed by cytochrome c folding reaction.
    Choi J; Cho DW; Tojo S; Fujitsuka M; Majima T
    Mol Biosyst; 2015 Jan; 11(1):218-22. PubMed ID: 25358103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterologous overexpression and purification of cytochrome c' from Rhodobacter capsulatus and a mutant (K42E) in the dimerization region. Mutation does not alter oligomerization but impacts the heme iron spin state and nitric oxide binding properties.
    Huston WM; Andrew CR; Servid AE; McKay AL; Leech AP; Butler CS; Moir JW
    Biochemistry; 2006 Apr; 45(14):4388-95. PubMed ID: 16584174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transient and time-resolved resonance Raman investigation of photoinitiated electron transfer in ruthenated cytochromes c.
    Simpson MC; Millett F; Pan LP; Larsen RW; Hobbs JD; Fan B; Ondrias MR
    Biochemistry; 1996 Aug; 35(31):10019-30. PubMed ID: 8756464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast Heme Dynamics of Ferric Cytochrome c in Different Environments: Electronic, Vibrational, and Conformational Relaxation.
    Karunakaran V
    Chemphyschem; 2015 Dec; 16(18):3974-83. PubMed ID: 26416435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient and stationary spectroscopy of cytochrome c: ultrafast internal conversion controls photoreduction.
    Löwenich D; Kleinermanns K; Karunakaran V; Kovalenko SA
    Photochem Photobiol; 2008; 84(1):193-201. PubMed ID: 18173720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A possible role for the covalent heme-protein linkage in cytochrome c revealed via comparison of N-acetylmicroperoxidase-8 and a synthetic, monohistidine-coordinated heme peptide.
    Cowley AB; Lukat-Rodgers GS; Rodgers KR; Benson DR
    Biochemistry; 2004 Feb; 43(6):1656-66. PubMed ID: 14769043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.