These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 16800640)
1. Evidence for rapid inter- and intramolecular chlorine transfer reactions of histamine and carnosine chloramines: implications for the prevention of hypochlorous-acid-mediated damage. Pattison DI; Davies MJ Biochemistry; 2006 Jul; 45(26):8152-62. PubMed ID: 16800640 [TBL] [Abstract][Full Text] [Related]
2. Kinetic analysis of the role of histidine chloramines in hypochlorous acid mediated protein oxidation. Pattison DI; Davies MJ Biochemistry; 2005 May; 44(19):7378-87. PubMed ID: 15882077 [TBL] [Abstract][Full Text] [Related]
3. Hypochlorous acid-mediated protein oxidation: how important are chloramine transfer reactions and protein tertiary structure? Pattison DI; Hawkins CL; Davies MJ Biochemistry; 2007 Aug; 46(34):9853-64. PubMed ID: 17676767 [TBL] [Abstract][Full Text] [Related]
4. Carnosine and Carcinine Derivatives Rapidly React with Hypochlorous Acid to Form Chloramines and Dichloramines. Carroll L; Karton A; Radom L; Davies MJ; Pattison DI Chem Res Toxicol; 2019 Mar; 32(3):513-525. PubMed ID: 30693765 [TBL] [Abstract][Full Text] [Related]
5. Imidazole catalyzes chlorination by unreactive primary chloramines. Roemeling MD; Williams J; Beckman JS; Hurst JK Free Radic Biol Med; 2015 May; 82():167-78. PubMed ID: 25660996 [TBL] [Abstract][Full Text] [Related]
6. Chlorine transfer between glycine, taurine, and histamine: reaction rates and impact on cellular reactivity. Peskin AV; Midwinter RG; Harwood DT; Winterbourn CC Free Radic Biol Med; 2004 Nov; 37(10):1622-30. PubMed ID: 15477013 [TBL] [Abstract][Full Text] [Related]
7. Ability of hypochlorous acid and N-chloramines to chlorinate DNA and its constituents. Stanley NR; Pattison DI; Hawkins CL Chem Res Toxicol; 2010 Jul; 23(7):1293-302. PubMed ID: 20593802 [TBL] [Abstract][Full Text] [Related]
8. Kinetics of 3-chlorotyrosine formation and loss due to hypochlorous acid and chloramines. Curtis MP; Hicks AJ; Neidigh JW Chem Res Toxicol; 2011 Mar; 24(3):418-28. PubMed ID: 21319831 [TBL] [Abstract][Full Text] [Related]
9. Identification of proteins susceptible to thiol oxidation in endothelial cells exposed to hypochlorous acid and N-chloramines. Summers FA; Forsman Quigley A; Hawkins CL Biochem Biophys Res Commun; 2012 Aug; 425(2):157-61. PubMed ID: 22819842 [TBL] [Abstract][Full Text] [Related]
10. Chlorination of N-acetyltyrosine with HOCl, chloramines, and myeloperoxidase-hydrogen peroxide-chloride system. Drabik G; Naskalski JW Acta Biochim Pol; 2001; 48(1):271-5. PubMed ID: 11440179 [TBL] [Abstract][Full Text] [Related]
11. Chlorine transfer between glycine, taurine, and histamine: reaction rates and impact on cellular reactivity. Peskin AV; Midwinter RG; Harwood DT; Winterbourn CC Free Radic Biol Med; 2005 Feb; 38(3):397-405. PubMed ID: 15693173 [TBL] [Abstract][Full Text] [Related]
12. Reaction Mechanisms of Histidine and Carnosine with Hypochlorous Acid Along with Chlorination Reactivity of N-Chlorinated Intermediates: A Computational Study. Han Y; Zhou Y; Liu YD; Zhong R Chem Res Toxicol; 2022 May; 35(5):750-759. PubMed ID: 35436107 [TBL] [Abstract][Full Text] [Related]
13. Lysine residues direct the chlorination of tyrosines in YXXK motifs of apolipoprotein A-I when hypochlorous acid oxidizes high density lipoprotein. Bergt C; Fu X; Huq NP; Kao J; Heinecke JW J Biol Chem; 2004 Feb; 279(9):7856-66. PubMed ID: 14660678 [TBL] [Abstract][Full Text] [Related]
14. Hypochlorous acid-mediated oxidation of lipid components and antioxidants present in low-density lipoproteins: absolute rate constants, product analysis, and computational modeling. Pattison DI; Hawkins CL; Davies MJ Chem Res Toxicol; 2003 Apr; 16(4):439-49. PubMed ID: 12703960 [TBL] [Abstract][Full Text] [Related]
15. Reactivity of selenium-containing compounds with myeloperoxidase-derived chlorinating oxidants: Second-order rate constants and implications for biological damage. Carroll L; Pattison DI; Fu S; Schiesser CH; Davies MJ; Hawkins CL Free Radic Biol Med; 2015 Jul; 84():279-288. PubMed ID: 25841785 [TBL] [Abstract][Full Text] [Related]
16. What are the plasma targets of the oxidant hypochlorous acid? A kinetic modeling approach. Pattison DI; Hawkins CL; Davies MJ Chem Res Toxicol; 2009 May; 22(5):807-17. PubMed ID: 19326902 [TBL] [Abstract][Full Text] [Related]
17. Hypochlorite-induced damage to DNA, RNA, and polynucleotides: formation of chloramines and nitrogen-centered radicals. Hawkins CL; Davies MJ Chem Res Toxicol; 2002 Jan; 15(1):83-92. PubMed ID: 11800600 [TBL] [Abstract][Full Text] [Related]
18. Inactivation of protease inhibitors and lysozyme by hypochlorous acid: role of side-chain oxidation and protein unfolding in loss of biological function. Hawkins CL; Davies MJ Chem Res Toxicol; 2005 Oct; 18(10):1600-10. PubMed ID: 16533025 [TBL] [Abstract][Full Text] [Related]
20. Identification of plasma proteins that are susceptible to thiol oxidation by hypochlorous acid and N-chloramines. Summers FA; Morgan PE; Davies MJ; Hawkins CL Chem Res Toxicol; 2008 Sep; 21(9):1832-40. PubMed ID: 18698849 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]