These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 16800685)

  • 1. In situ three-dimensional characterization of membrane fouling by protein suspensions using multiphoton microscopy.
    Hughes DJ; Cui Z; Field RW; Tirlapur UK
    Langmuir; 2006 Jul; 22(14):6266-72. PubMed ID: 16800685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane fouling by cell-protein mixtures: in situ characterisation using multi-photon microscopy.
    Hughes DJ; Cui Z; Field RW; Tirlapur UK
    Biotechnol Bioeng; 2007 Apr; 96(6):1083-91. PubMed ID: 16933334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fouling of nanofiltration, reverse osmosis, and ultrafiltration membranes by protein mixtures: the role of inter-foulant-species interaction.
    Wang YN; Tang CY
    Environ Sci Technol; 2011 Aug; 45(15):6373-9. PubMed ID: 21678956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of a pore-blockage--cake-filtration model to protein fouling during microfiltration.
    Palacio L; Ho CC; Zydney AL
    Biotechnol Bioeng; 2002 Aug; 79(3):260-70. PubMed ID: 12115414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualising fouling of a chromatographic matrix using confocal scanning laser microscopy.
    Siu SC; Boushaba R; Topoyassakul V; Graham A; Choudhury S; Moss G; Titchener-Hooker NJ
    Biotechnol Bioeng; 2006 Nov; 95(4):714-23. PubMed ID: 16817189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of added yeast on protein transmission and flux in cross-flow membrane microfiltration.
    Kuberkar VT; Davis RH
    Biotechnol Prog; 1999 May; 15(3):472-9. PubMed ID: 10356265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of membrane morphology on system capacity during normal flow microfiltration.
    Zydney AL; Ho CC
    Biotechnol Bioeng; 2003 Sep; 83(5):537-43. PubMed ID: 12827695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Combined Pore Blockage and Cake Filtration Model for Protein Fouling during Microfiltration.
    Ho CC; Zydney AL
    J Colloid Interface Sci; 2000 Dec; 232(2):389-399. PubMed ID: 11097775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phospholipid coatings for the prevention of membrane fouling.
    Reuben BG; Perl O; Morgan NL; Stratford P; Dudley LY; Hawes C
    J Chem Technol Biotechnol; 1995 May; 63(1):85-91. PubMed ID: 7766404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of an ultrasonic technique for in situ investigating the properties of deposited protein during crossflow ultrafiltration.
    Li J; Sanderson RD; Chai GY; Hallbauer DK
    J Colloid Interface Sci; 2005 Apr; 284(1):228-38. PubMed ID: 15752807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein fouling behavior of carbon nanotube/polyethersulfone composite membranes during water filtration.
    Celik E; Liu L; Choi H
    Water Res; 2011 Oct; 45(16):5287-94. PubMed ID: 21862096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective precipitation-assisted recovery of immunoglobulins from bovine serum using controlled-fouling crossflow membrane microfiltration.
    Venkiteshwaran A; Heider P; Teysseyre L; Belfort G
    Biotechnol Bioeng; 2008 Dec; 101(5):957-66. PubMed ID: 18553503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An approach to fouling characterization of an ion-exchange membrane using current-voltage relation and electrical impedance spectroscopy.
    Park JS; Choi JH; Yeon KH; Moon SH
    J Colloid Interface Sci; 2006 Feb; 294(1):129-38. PubMed ID: 16085080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitive and versatile detection of the fouling process and fouling propensity of proteins on polyvinylidene fluoride membranes via surface-enhanced Raman spectroscopy.
    Cui L; Yao M; Ren B; Zhang KS
    Anal Chem; 2011 Mar; 83(5):1709-16. PubMed ID: 21291236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of pore size, shear rate, and harvest time during the constant permeate flux microfiltration of CHO cell culture supernatant.
    Stressmann M; Moresoli C
    Biotechnol Prog; 2008; 24(4):890-7. PubMed ID: 19194898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic activation of cellulose acetate membrane for reducing of protein fouling.
    Koseoglu-Imer DY; Dizge N; Koyuncu I
    Colloids Surf B Biointerfaces; 2012 Apr; 92():334-9. PubMed ID: 22218336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fouling mitigation by iron-based electroflocculation in microfiltration: Mechanisms and energy minimization.
    Ben Sasson M; Adin A
    Water Res; 2010 Jul; 44(13):3973-81. PubMed ID: 20570312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct observation of bacterial deposition onto clean and organic-fouled polyamide membranes.
    Subramani A; Huang X; Hoek EM
    J Colloid Interface Sci; 2009 Aug; 336(1):13-20. PubMed ID: 19406423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving hydrophilicity and protein resistance of poly(vinylidene fluoride) membranes by blending with amphiphilic hyperbranched-star polymer.
    Zhao YH; Zhu BK; Kong L; Xu YY
    Langmuir; 2007 May; 23(10):5779-86. PubMed ID: 17408299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition in fouling mechanism in microfiltration of a surface water.
    Yamamura H; Chae S; Kimura K; Watanabe Y
    Water Res; 2007 Sep; 41(17):3812-22. PubMed ID: 17631376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.