These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 16800751)

  • 41. Affinity sensor: a new technique for developing implantable sensors for glucose and other metabolites.
    Schultz JS; Mansouri S; Goldstein IJ
    Diabetes Care; 1982; 5(3):245-53. PubMed ID: 6184210
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Performance of subcutaneously implanted glucose sensors for continuous monitoring.
    Gerritsen M; Jansen JA; Lutterman JA
    Neth J Med; 1999 Apr; 54(4):167-79. PubMed ID: 10218387
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A time-resolved near-infrared fluorescence assay for glucose: opportunities for trans-dermal sensing.
    Rolinski OJ; Birch DJ; McCartney LJ; Pickup JC
    J Photochem Photobiol B; 2000 Jan; 54(1):26-34. PubMed ID: 10739140
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evaluation of a subcutaneous glucose sensor out to 3 months in a dog model.
    Gilligan BJ; Shults MC; Rhodes RK; Updike SJ
    Diabetes Care; 1994 Aug; 17(8):882-7. PubMed ID: 7956636
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Harnessing a nanostructured fluorescence energy transfer sensor for quick detection of extremely small amounts of glucose.
    Zhang J; Wang X; Chen L; Li J; Luzak K
    J Diabetes Sci Technol; 2013 Jan; 7(1):45-52. PubMed ID: 23439159
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Performance of subcutaneously implanted glucose sensors: a review.
    Gerritsen M; Jansen JA; Kros A; Nolte RJ; Lutterman JA
    J Invest Surg; 1998; 11(3):163-74. PubMed ID: 9743484
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biocompatibility of an electrochemical sensor for continuous glucose monitoring in subcutaneous tissue.
    Mang A; Pill J; Gretz N; Kränzlin B; Buck H; Schoemaker M; Petrich W
    Diabetes Technol Ther; 2005 Feb; 7(1):163-73. PubMed ID: 15738714
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Determination of plasma glucose during rapid glucose excursions with a subcutaneous glucose sensor.
    Steil GM; Rebrin K; Mastrototaro J; Bernaba B; Saad MF
    Diabetes Technol Ther; 2003; 5(1):27-31. PubMed ID: 12725704
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A continuous glucose sensor based on wired enzyme technology -- results from a 3-day trial in patients with type 1 diabetes.
    Feldman B; Brazg R; Schwartz S; Weinstein R
    Diabetes Technol Ther; 2003; 5(5):769-79. PubMed ID: 14633342
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Homogeneous detection of concanavalin A using pyrene-conjugated maltose assembled graphene based on fluorescence resonance energy transfer.
    Chen Q; Wei W; Lin JM
    Biosens Bioelectron; 2011 Jul; 26(11):4497-502. PubMed ID: 21621405
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biosensors for real-time in vivo measurements.
    Wilson GS; Gifford R
    Biosens Bioelectron; 2005 Jun; 20(12):2388-403. PubMed ID: 15854814
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Subcutaneously implantable glucose sensors in patients with diabetes mellitus; still many problems].
    Gerritsen M; Jansen JA; Lutterman JA
    Ned Tijdschr Geneeskd; 2002 Jul; 146(28):1313-6. PubMed ID: 12148218
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Utilizing hyaluronic acid as a versatile platform for fluorescence resonance energy transfer-based glucose sensing.
    Ge M; Bai P; Chen M; Tian J; Hu J; Zhi X; Yin H; Yin J
    Anal Bioanal Chem; 2018 Mar; 410(9):2413-2421. PubMed ID: 29455283
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Polymeric "smart" coatings to prevent foreign body response to implantable biosensors.
    Wang Y; Papadimitrakopoulos F; Burgess DJ
    J Control Release; 2013 Aug; 169(3):341-7. PubMed ID: 23298616
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Integrated catheter system for continuous glucose measurement and simultaneous insulin infusion.
    Nacht B; Larndorfer C; Sax S; Borisov SM; Hajnsek M; Sinner F; List-Kratochvil EJ; Klimant I
    Biosens Bioelectron; 2015 Feb; 64():102-10. PubMed ID: 25194803
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vivo response of microfabricated glucose sensors to glycemia changes in normal rats.
    Koudelka M; Rohner-Jeanrenaud F; Terrettaz J; Bobbioni-Harsch E; de Rooij NF; Jeanrenaud B
    Biomed Biochim Acta; 1989; 48(11-12):953-6. PubMed ID: 2636840
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Clinical performance of a low cost near infrared sensor for continuous glucose monitoring applied with subcutaneous microdialysis.
    Ben Mohammadi L; Klotzbuecher T; Sigloch S; Welzel K; Goeddel M; Pieber TR; Schaupp L
    Biomed Microdevices; 2015 Aug; 17(4):73. PubMed ID: 26141039
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A fully implantable subcutaneous glucose sensor array: enhanced accuracy from multiple sensing units and a median-based algorithm.
    Ward WK; Casey HM; Quinn MJ; Federiuk IF; Wood MD
    Diabetes Technol Ther; 2003; 5(6):943-52. PubMed ID: 14709196
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Lifespan of subcutaneous glucose sensors and their performances during dynamic glycaemia changes in rats.
    Bobbioni-Harsch E; Rohner-Jeanrenaud F; Koudelka M; de Rooij N; Jeanrenaud B
    J Biomed Eng; 1993 Nov; 15(6):457-63. PubMed ID: 8277748
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Recording of subcutaneous glucose dynamics by a viscometric affinity sensor.
    Beyer U; Schäfer D; Thomas A; Aulich H; Haueter U; Reihl B; Ehwald R
    Diabetologia; 2001 Apr; 44(4):416-23. PubMed ID: 11357470
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.