These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 16801239)
21. Creating Drug Solubilization Compartments via Phase Separation in Multicomponent Buccal Patches Prepared by Direct Hot Melt Extrusion-Injection Molding. Alhijjaj M; Bouman J; Wellner N; Belton P; Qi S Mol Pharm; 2015 Dec; 12(12):4349-62. PubMed ID: 26551593 [TBL] [Abstract][Full Text] [Related]
22. Enhancement of dissolution rate of poorly-soluble active ingredients by supercritical fluid processes. Part I: Micronization of neat particles. Perrut M; Jung J; Leboeuf F Int J Pharm; 2005 Jan; 288(1):3-10. PubMed ID: 15607252 [TBL] [Abstract][Full Text] [Related]
23. Polymorphic control of inhalation microparticles prepared by crystallization. Murnane D; Marriott C; Martin GP Int J Pharm; 2008 Sep; 361(1-2):141-9. PubMed ID: 18582548 [TBL] [Abstract][Full Text] [Related]
24. Formation of phenytoin nanoparticles using rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process. Thakur R; Gupta RB Int J Pharm; 2006 Feb; 308(1-2):190-9. PubMed ID: 16352406 [TBL] [Abstract][Full Text] [Related]
25. Microparticle size control and glimepiride microencapsulation using spray congealing technology. Ilić I; Dreu R; Burjak M; Homar M; Kerc J; Srcic S Int J Pharm; 2009 Nov; 381(2):176-83. PubMed ID: 19446625 [TBL] [Abstract][Full Text] [Related]
26. Preparation, characterization and in vitro cytotoxicity of indomethacin-loaded PLLA/PLGA microparticles using supercritical CO2 technique. Kang Y; Wu J; Yin G; Huang Z; Yao Y; Liao X; Chen A; Pu X; Liao L Eur J Pharm Biopharm; 2008 Sep; 70(1):85-97. PubMed ID: 18495445 [TBL] [Abstract][Full Text] [Related]
27. Formulation by design of felodipine loaded liquid and solid self nanoemulsifying drug delivery systems using Box-Behnken design. Verma S; Singh SK; Verma PR; Ahsan MN Drug Dev Ind Pharm; 2014 Oct; 40(10):1358-70. PubMed ID: 23879216 [TBL] [Abstract][Full Text] [Related]
28. Micronization of phenylbutazone by rapid expansion of supercritical CO2 solution. Moribe K; Tsutsumi S; Morishita S; Shinozaki H; Tozuka Y; Oguchi T; Yamamoto K Chem Pharm Bull (Tokyo); 2005 Aug; 53(8):1025-8. PubMed ID: 16079541 [TBL] [Abstract][Full Text] [Related]
29. Supercritical fluid assisted atomization introduced by an enhanced mixer for micronization of lysozyme: Particle morphology, size and protein stability. Du Z; Guan YX; Yao SJ; Zhu ZQ Int J Pharm; 2011 Dec; 421(2):258-68. PubMed ID: 22001535 [TBL] [Abstract][Full Text] [Related]
30. Preparation, characterization and in vitro release properties of morphine-loaded PLLA-PEG-PLLA microparticles via solution enhanced dispersion by supercritical fluids. Chen F; Yin G; Liao X; Yang Y; Huang Z; Gu J; Yao Y; Chen X; Gao H J Mater Sci Mater Med; 2013 Jul; 24(7):1693-705. PubMed ID: 23625317 [TBL] [Abstract][Full Text] [Related]
31. Insulin particle formation in supersaturated aqueous solutions of poly(ethylene glycol). Bromberg L; Rashba-Step J; Scott T Biophys J; 2005 Nov; 89(5):3424-33. PubMed ID: 16254391 [TBL] [Abstract][Full Text] [Related]
32. Simultaneous production and co-mixing of microparticles of nevirapine with excipients by supercritical antisolvent method for dissolution enhancement. Sanganwar GP; Sathigari S; Babu RJ; Gupta RB Eur J Pharm Sci; 2010 Jan; 39(1-3):164-74. PubMed ID: 19961931 [TBL] [Abstract][Full Text] [Related]
33. Enhanced aqueous dissolution of a poorly water soluble drug by novel particle engineering technology: spray-freezing into liquid with atmospheric freeze-drying. Rogers TL; Nelsen AC; Sarkari M; Young TJ; Johnston KP; Williams RO Pharm Res; 2003 Mar; 20(3):485-93. PubMed ID: 12669973 [TBL] [Abstract][Full Text] [Related]
34. Investigation of the release mechanism of a sparingly water-soluble drug from solid dispersions in hydrophilic carriers based on physical state of drug, particle size distribution and drug-polymer interactions. Karavas E; Georgarakis E; Sigalas MP; Avgoustakis K; Bikiaris D Eur J Pharm Biopharm; 2007 Jun; 66(3):334-47. PubMed ID: 17267194 [TBL] [Abstract][Full Text] [Related]
35. Characterization and biological evaluation of paclitaxel-loaded poly(L-lactic acid) microparticles prepared by supercritical CO2. Kang Y; Wu J; Yin G; Huang Z; Liao X; Yao Y; Ouyang P; Wang H; Yang Q Langmuir; 2008 Jul; 24(14):7432-41. PubMed ID: 18547089 [TBL] [Abstract][Full Text] [Related]
36. Supercritical antisolvent precipitation of PHBV microparticles. Costa MS; Duarte AR; Cardoso MM; Duarte CM Int J Pharm; 2007 Jan; 328(1):72-7. PubMed ID: 16971075 [TBL] [Abstract][Full Text] [Related]
37. Supercritical carbon dioxide solubility measurement and modelling for effective size reduction of nifedipine particles for transdermal application. Massias T; de Paiva Lacerda S; Resende de Azevedo J; Letourneau JJ; Bolzinger MA; Espitalier F Int J Pharm; 2023 Jan; 630():122425. PubMed ID: 36436744 [TBL] [Abstract][Full Text] [Related]
38. A novel strategy to design sustained-release poorly water-soluble drug mesoporous silica microparticles based on supercritical fluid technique. Li-Hong W; Xin C; Hui X; Li-Li Z; Jing H; Mei-Juan Z; Jie L; Yi L; Jin-Wen L; Wei Z; Gang C Int J Pharm; 2013 Sep; 454(1):135-42. PubMed ID: 23871738 [TBL] [Abstract][Full Text] [Related]
39. Dissolution-rate enhancement of fenofibrate by adsorption onto silica using supercritical carbon dioxide. Sanganwar GP; Gupta RB Int J Pharm; 2008 Aug; 360(1-2):213-8. PubMed ID: 18550302 [TBL] [Abstract][Full Text] [Related]
40. Evaluation of the Potential Use of Laminar Extrudates on Stabilizing Micronized Coumarin Particles by Supercritical Fluids (RESS)-Study of Different RESS Processing Variables and Mode of Operation. Oliveira GE; Pinto JF AAPS PharmSciTech; 2017 Oct; 18(7):2792-2807. PubMed ID: 28382603 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]