These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 16802208)
1. Investigation of the role of a conserved glycine motif in the Saccharomyces cerevisiae xylose reductase. Chu BC; Lee H Curr Microbiol; 2006 Aug; 53(2):118-23. PubMed ID: 16802208 [TBL] [Abstract][Full Text] [Related]
2. Identification of lysine-78 as an essential residue in the Saccharomyces cerevisiae xylose reductase. Jeong EY; Kim IS; Lee H FEMS Microbiol Lett; 2002 Apr; 209(2):223-8. PubMed ID: 12007809 [TBL] [Abstract][Full Text] [Related]
3. Mutational study of the role of tyrosine-49 in the Saccharomyces cerevisiae xylose reductase. Jeong EY; Sopher C; Kim IS; Lee H Yeast; 2001 Aug; 18(11):1081-9. PubMed ID: 11481678 [TBL] [Abstract][Full Text] [Related]
4. Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae. Moon J; Liu ZL Yeast; 2015 Apr; 32(4):399-407. PubMed ID: 25656103 [TBL] [Abstract][Full Text] [Related]
5. A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion. Liu ZL; Moon J Gene; 2009 Oct; 446(1):1-10. PubMed ID: 19577617 [TBL] [Abstract][Full Text] [Related]
6. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae. Krahulec S; Klimacek M; Nidetzky B Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479 [TBL] [Abstract][Full Text] [Related]
7. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant. Kratzer R; Kavanagh KL; Wilson DK; Nidetzky B Biochemistry; 2004 May; 43(17):4944-54. PubMed ID: 15109252 [TBL] [Abstract][Full Text] [Related]
8. Exploring the active site of yeast xylose reductase by site-directed mutagenesis of sequence motifs characteristic of two dehydrogenase/reductase family types. Klimacek M; Szekely M; Griessler R; Nidetzky B FEBS Lett; 2001 Jul; 500(3):149-52. PubMed ID: 11445075 [TBL] [Abstract][Full Text] [Related]
9. Kinetic mechanism of an aldehyde reductase of Saccharomyces cerevisiae that relieves toxicity of furfural and 5-hydroxymethylfurfural. Jordan DB; Braker JD; Bowman MJ; Vermillion KE; Moon J; Liu ZL Biochim Biophys Acta; 2011 Dec; 1814(12):1686-94. PubMed ID: 21890004 [TBL] [Abstract][Full Text] [Related]
10. Identification of a determinant for strict NADP(H)-specificity and high sensitivity to mixed-type steroid inhibitor of rabbit aldo-keto reductase 1C33 by site-directed mutagenesis. Endo S; Matsunaga T; Ikari A; El-Kabbani O; Hara A; Kitade Y Arch Biochem Biophys; 2015 Mar; 569():19-25. PubMed ID: 25660042 [TBL] [Abstract][Full Text] [Related]
11. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae. Lee SH; Kodaki T; Park YC; Seo JH J Biotechnol; 2012 Apr; 158(4):184-91. PubMed ID: 21699927 [TBL] [Abstract][Full Text] [Related]
12. Crystal structure of yeast xylose reductase in complex with a novel NADP-DTT adduct provides insights into substrate recognition and catalysis. Paidimuddala B; Mohapatra SB; Gummadi SN; Manoj N FEBS J; 2018 Dec; 285(23):4445-4464. PubMed ID: 30269423 [TBL] [Abstract][Full Text] [Related]
13. Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Matsushika A; Watanabe S; Kodaki T; Makino K; Inoue H; Murakami K; Takimura O; Sawayama S Appl Microbiol Biotechnol; 2008 Nov; 81(2):243-55. PubMed ID: 18751695 [TBL] [Abstract][Full Text] [Related]
14. YLL056C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity. Wang HY; Xiao DF; Zhou C; Wang LL; Wu L; Lu YT; Xiang QJ; Zhao K; Li X; Ma M- Appl Microbiol Biotechnol; 2017 Jun; 101(11):4507-4520. PubMed ID: 28265724 [TBL] [Abstract][Full Text] [Related]
15. The positive effect of the decreased NADPH-preferring activity of xylose reductase from Pichia stipitis on ethanol production using xylose-fermenting recombinant Saccharomyces cerevisiae. Watanabe S; Pack SP; Saleh AA; Annaluru N; Kodaki T; Makino K Biosci Biotechnol Biochem; 2007 May; 71(5):1365-9. PubMed ID: 17485825 [TBL] [Abstract][Full Text] [Related]
16. Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP(+)-dependent xylitol dehydrogenase. Khattab SM; Saimura M; Kodaki T J Biotechnol; 2013 Jun; 165(3-4):153-6. PubMed ID: 23578809 [TBL] [Abstract][Full Text] [Related]
17. Probing the substrate binding site of Candida tenuis xylose reductase (AKR2B5) with site-directed mutagenesis. Kratzer R; Leitgeb S; Wilson DK; Nidetzky B Biochem J; 2006 Jan; 393(Pt 1):51-8. PubMed ID: 16336198 [TBL] [Abstract][Full Text] [Related]
18. Altering dimer contacts in xylose reductase from Candida tenuis by site-directed mutagenesis: structural and functional properties of R180A mutant. Klimacek M; Wührer F; Kavanagh KL; Wilson DK; Nidetzky B Chem Biol Interact; 2003 Feb; 143-144():523-32. PubMed ID: 12604238 [TBL] [Abstract][Full Text] [Related]
19. Site-directed mutagenesis of the cysteine residues in the Pichia stipitis xylose reductase. Zhang Y; Lee H FEMS Microbiol Lett; 1997 Feb; 147(2):227-32. PubMed ID: 9119198 [TBL] [Abstract][Full Text] [Related]
20. Cloning, overexpression, and mutagenesis of the Sporobolomyces salmonicolor AKU4429 gene encoding a new aldehyde reductase, which catalyzes the stereoselective reduction of ethyl 4-chloro-3-oxobutanoate to ethyl (S)-4-chloro-3-hydroxybutanoate. Kita K; Fukura T; Nakase KI; Okamoto K; Yanase H; Kataoka M; Shimizu S Appl Environ Microbiol; 1999 Dec; 65(12):5207-11. PubMed ID: 10583966 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]