BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 16802336)

  • 1. Embryonic origin of the Drosophila brain neuropile.
    Younossi-Hartenstein A; Nguyen B; Shy D; Hartenstein V
    J Comp Neurol; 2006 Aug; 497(6):981-98. PubMed ID: 16802336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early development of the Drosophila brain: V. Pattern of postembryonic neuronal lineages expressing DE-cadherin.
    Dumstrei K; Wang F; Nassif C; Hartenstein V
    J Comp Neurol; 2003 Jan; 455(4):451-62. PubMed ID: 12508319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Embryonic development of the Drosophila brain. I. Pattern of pioneer tracts.
    Nassif C; Noveen A; Hartenstein V
    J Comp Neurol; 1998 Dec; 402(1):10-31. PubMed ID: 9831043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphogenesis and proliferation of the larval brain glia in Drosophila.
    Pereanu W; Shy D; Hartenstein V
    Dev Biol; 2005 Jul; 283(1):191-203. PubMed ID: 15907832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Embryonic development of the Drosophila brain. II. Pattern of glial cells.
    Hartenstein V; Nassif C; Lekven A
    J Comp Neurol; 1998 Dec; 402(1):32-47. PubMed ID: 9831044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drosophila cortex and neuropile glia influence secondary axon tract growth, pathfinding, and fasciculation in the developing larval brain.
    Spindler SR; Ortiz I; Fung S; Takashima S; Hartenstein V
    Dev Biol; 2009 Oct; 334(2):355-68. PubMed ID: 19646433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early development of the Drosophila brain: IV. Larval neuropile compartments defined by glial septa.
    Younossi-Hartenstein A; Salvaterra PM; Hartenstein V
    J Comp Neurol; 2003 Jan; 455(4):435-50. PubMed ID: 12508318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early development of the Drosophila brain: III. The pattern of neuropile founder tracts during the larval period.
    Nassif C; Noveen A; Hartenstein V
    J Comp Neurol; 2003 Jan; 455(4):417-34. PubMed ID: 12508317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene expression patterns in primary neuronal clusters of the Drosophila embryonic brain.
    Sprecher SG; Reichert H; Hartenstein V
    Gene Expr Patterns; 2007 Apr; 7(5):584-95. PubMed ID: 17300994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patterns of growth, axonal extension and axonal arborization of neuronal lineages in the developing Drosophila brain.
    Larsen C; Shy D; Spindler SR; Fung S; Pereanu W; Younossi-Hartenstein A; Hartenstein V
    Dev Biol; 2009 Nov; 335(2):289-304. PubMed ID: 19538956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multipotent neural stem cells generate glial cells of the central complex through transit amplifying intermediate progenitors in Drosophila brain development.
    Viktorin G; Riebli N; Popkova A; Giangrande A; Reichert H
    Dev Biol; 2011 Aug; 356(2):553-65. PubMed ID: 21708145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural lineages of the Drosophila brain: a three-dimensional digital atlas of the pattern of lineage location and projection at the late larval stage.
    Pereanu W; Hartenstein V
    J Neurosci; 2006 May; 26(20):5534-53. PubMed ID: 16707805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modular neuropile organization in the Drosophila larval brain facilitates identification and mapping of central neurons.
    Iyengar BG; Chou CJ; Sharma A; Atwood HL
    J Comp Neurol; 2006 Dec; 499(4):583-602. PubMed ID: 17029252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lineage-associated tracts defining the anatomy of the Drosophila first instar larval brain.
    Hartenstein V; Younossi-Hartenstein A; Lovick JK; Kong A; Omoto JJ; Ngo KT; Viktorin G
    Dev Biol; 2015 Oct; 406(1):14-39. PubMed ID: 26141956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of DE-cadherin in neuroblast proliferation, neural morphogenesis, and axon tract formation in Drosophila larval brain development.
    Dumstrei K; Wang F; Hartenstein V
    J Neurosci; 2003 Apr; 23(8):3325-35. PubMed ID: 12716940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Segregation of postembryonic neuronal and glial lineages inferred from a mosaic analysis of the Drosophila larval brain.
    Colonques J; Ceron J; Tejedor FJ
    Mech Dev; 2007 May; 124(5):327-40. PubMed ID: 17344035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of wing sensory axons in the central nervous system of Drosophila during metamorphosis.
    Whitlock KE; Palka J
    J Neurobiol; 1995 Feb; 26(2):189-204. PubMed ID: 7535838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The early scaffold of axon tracts in the brain of a primitive vertebrate, the sea lamprey.
    Barreiro-Iglesias A; Villar-Cheda B; Abalo XM; Anadón R; Rodicio MC
    Brain Res Bull; 2008 Jan; 75(1):42-52. PubMed ID: 18158094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Axonal outgrowth within the abnormal scaffold of brain tracts in a zebrafish mutant.
    Patel CK; Rodriguez LC; Kuwada JY
    J Neurobiol; 1994 Apr; 25(4):345-60. PubMed ID: 8077962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Postembryonic brain development in the monarch butterfly,Danaus plexippus plexippus, L. : I. Cellular events during brain morphogenesis.
    Nordlander RH; Edwards JS
    Wilhelm Roux Arch Entwickl Mech Org; 1969 Sep; 162(3):197-217. PubMed ID: 28304450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.