These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 16802336)

  • 21. The developing cervical spinal ventral commissure of the rat: a highly controlled axon-glial system.
    Lane S; McDermott K; Dockery P; Fraher J
    J Neurocytol; 2004 Sep; 33(5):489-501. PubMed ID: 15906157
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of neural lineages derived from the sine oculis positive eye field of Drosophila.
    Chang T; Younossi-Hartenstein A; Hartenstein V
    Arthropod Struct Dev; 2003 Dec; 32(4):303-17. PubMed ID: 18089014
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Drosophila E-cadherin and its binding partner Armadillo/ beta-catenin are required for axonal pathway choices in the developing larval brain.
    Fung S; Wang F; Spindler SR; Hartenstein V
    Dev Biol; 2009 Aug; 332(2):371-82. PubMed ID: 19520071
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Origin and development of neuropil glia of the Drosophila larval and adult brain: Two distinct glial populations derived from separate progenitors.
    Omoto JJ; Yogi P; Hartenstein V
    Dev Biol; 2015 Aug; 404(2):2-20. PubMed ID: 25779704
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Morphological diversity and development of glia in Drosophila.
    Hartenstein V
    Glia; 2011 Sep; 59(9):1237-52. PubMed ID: 21438012
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expression profile of the cadherin family in the developing Drosophila brain.
    Fung S; Wang F; Chase M; Godt D; Hartenstein V
    J Comp Neurol; 2008 Jan; 506(3):469-88. PubMed ID: 18041774
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Perturbed glial scaffold formation precedes axon tract malformation in Drosophila mutants.
    Jacobs JR
    J Neurobiol; 1993 May; 24(5):611-26. PubMed ID: 8326301
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Postembryonic development of transit amplifying neuroblast lineages in the Drosophila brain.
    Izergina N; Balmer J; Bello B; Reichert H
    Neural Dev; 2009 Dec; 4():44. PubMed ID: 20003348
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Embryonic development of the insect central complex: insights from lineages in the grasshopper and Drosophila.
    Boyan G; Williams L
    Arthropod Struct Dev; 2011 Jul; 40(4):334-48. PubMed ID: 21382507
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neurobiology of the basal platyhelminth Macrostomum lignano: map and digital 3D model of the juvenile brain neuropile.
    Morris J; Cardona A; De Miguel-Bonet Mdel M; Hartenstein V
    Dev Genes Evol; 2007 Aug; 217(8):569-84. PubMed ID: 17611771
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tracheal development in the Drosophila brain is constrained by glial cells.
    Pereanu W; Spindler S; Cruz L; Hartenstein V
    Dev Biol; 2007 Feb; 302(1):169-80. PubMed ID: 17046740
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Early-born neurons in type II neuroblast lineages establish a larval primordium and integrate into adult circuitry during central complex development in Drosophila.
    Riebli N; Viktorin G; Reichert H
    Neural Dev; 2013 Apr; 8():6. PubMed ID: 23618231
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identity, origin, and migration of peripheral glial cells in the Drosophila embryo.
    von Hilchen CM; Beckervordersandforth RM; Rickert C; Technau GM; Altenhein B
    Mech Dev; 2008; 125(3-4):337-52. PubMed ID: 18077143
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development-based compartmentalization of the Drosophila central brain.
    Pereanu W; Kumar A; Jennett A; Reichert H; Hartenstein V
    J Comp Neurol; 2010 Aug; 518(15):2996-3023. PubMed ID: 20533357
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lineage-based analysis of the development of the central complex of the Drosophila brain.
    Pereanu W; Younossi-Hartenstein A; Lovick J; Spindler S; Hartenstein V
    J Comp Neurol; 2011 Mar; 519(4):661-89. PubMed ID: 21246549
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Arborization pattern of engrailed-positive neural lineages reveal neuromere boundaries in the Drosophila brain neuropil.
    Kumar A; Fung S; Lichtneckert R; Reichert H; Hartenstein V
    J Comp Neurol; 2009 Nov; 517(1):87-104. PubMed ID: 19711412
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [New approaches in developmental genetics and gene therapy: xenotransplantation of Drosophila embryonic nerve cells into the brain of vertebrate animals].
    Korochkin LI
    Genetika; 2000 Nov; 36(11):1436-42. PubMed ID: 11094760
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Patterns of growth and tract formation during the early development of secondary lineages in the Drosophila larval brain.
    Lovick JK; Kong A; Omoto JJ; Ngo KT; Younossi-Hartenstein A; Hartenstein V
    Dev Neurobiol; 2016 Apr; 76(4):434-51. PubMed ID: 26178322
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Postembryonic lineages of the Drosophila brain: I. Development of the lineage-associated fiber tracts.
    Lovick JK; Ngo KT; Omoto JJ; Wong DC; Nguyen JD; Hartenstein V
    Dev Biol; 2013 Dec; 384(2):228-57. PubMed ID: 23880429
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Building the central complex of the grasshopper Schistocerca gregaria: axons pioneering the w, x, y, z tracts project onto the primary commissural fascicle of the brain.
    Williams JL; Boyan GS
    Arthropod Struct Dev; 2008 Mar; 37(2):129-40. PubMed ID: 18089133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.