BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

467 related articles for article (PubMed ID: 16802802)

  • 1. 2-azaadamantane N-oxyl (AZADO) and 1-Me-AZADO: highly efficient organocatalysts for oxidation of alcohols.
    Shibuya M; Tomizawa M; Suzuki I; Iwabuchi Y
    J Am Chem Soc; 2006 Jul; 128(26):8412-3. PubMed ID: 16802802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery and exploitation of AZADO: the highly active catalyst for alcohol oxidation.
    Iwabuchi Y
    Chem Pharm Bull (Tokyo); 2013; 61(12):1197-213. PubMed ID: 24292782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an azanoradamantane-type nitroxyl radical catalyst for class-selective oxidation of alcohols.
    Doi R; Shibuya M; Murayama T; Yamamoto Y; Iwabuchi Y
    J Org Chem; 2015 Jan; 80(1):401-13. PubMed ID: 25474745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly efficient, organocatalytic aerobic alcohol oxidation.
    Shibuya M; Osada Y; Sasano Y; Tomizawa M; Iwabuchi Y
    J Am Chem Soc; 2011 May; 133(17):6497-500. PubMed ID: 21473575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 9-Azanoradamantane N-oxyl (Nor-AZADO): a highly active organocatalyst for alcohol oxidation.
    Hayashi M; Sasano Y; Nagasawa S; Shibuya M; Iwabuchi Y
    Chem Pharm Bull (Tokyo); 2011; 59(12):1570-3. PubMed ID: 22130384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic insight into aerobic alcohol oxidation using NOx-nitroxide catalysis based on catalyst structure-activity relationships.
    Shibuya M; Nagasawa S; Osada Y; Iwabuchi Y
    J Org Chem; 2014 Nov; 79(21):10256-68. PubMed ID: 25286356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Speedy and clean hypervalent iodine/nitroxyl radical mediated oxidation of alcohols using recyclable adamantane reagent with highly active 2-azaadamantane-N-oxyl organocatalyst.
    Dohi T; Kamitanaka T; Mochizuki E; Ito M; Kita Y
    Chem Pharm Bull (Tokyo); 2012; 60(11):1442-7. PubMed ID: 23124568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of the C-H bond by electrophilic attack: theoretical study of the reaction mechanism of the aerobic oxidation of alcohols to aldehydes by the Cu(bipy)(2+)/2,2,6,6-tetramethylpiperidinyl-1-oxy cocatalyst system.
    Michel C; Belanzoni P; Gamez P; Reedijk J; Baerends EJ
    Inorg Chem; 2009 Dec; 48(24):11909-20. PubMed ID: 19938864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TEMPO/HCl/NaNO2 catalyst: a transition-metal-free approach to efficient aerobic oxidation of alcohols to aldehydes and ketones under mild conditions.
    Wang X; Liu R; Jin Y; Liang X
    Chemistry; 2008; 14(9):2679-85. PubMed ID: 18293352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly efficient aerobic oxidation of alcohols by using less-hindered nitroxyl-radical/copper catalysis: optimum catalyst combinations and their substrate scope.
    Sasano Y; Kogure N; Nishiyama T; Nagasawa S; Iwabuchi Y
    Chem Asian J; 2015 Apr; 10(4):1004-9. PubMed ID: 25620279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly enantioselective organocatalytic oxidative kinetic resolution of secondary alcohols using chirally modified AZADOs.
    Tomizawa M; Shibuya M; Iwabuchi Y
    Org Lett; 2009 Apr; 11(8):1829-31. PubMed ID: 19323487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cu-NHC-TEMPO catalyzed aerobic oxidation of primary alcohols to aldehydes.
    Liu X; Xia Q; Zhang Y; Chen C; Chen W
    J Org Chem; 2013 Sep; 78(17):8531-6. PubMed ID: 23944937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SBA-15-functionalized TEMPO confined ionic liquid: an efficient catalyst system for transition-metal-free aerobic oxidation of alcohols with improved selectivity.
    Karimi B; Badreh E
    Org Biomol Chem; 2011 Jun; 9(11):4194-8. PubMed ID: 21505706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrocatalytic Alcohol Oxidation with TEMPO and Bicyclic Nitroxyl Derivatives: Driving Force Trumps Steric Effects.
    Rafiee M; Miles KC; Stahl SS
    J Am Chem Soc; 2015 Nov; 137(46):14751-7. PubMed ID: 26505317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iodine as a chemoselective reoxidant of TEMPO: application to the oxidation of alcohols to aldehydes and ketones.
    Miller RA; Hoerrner RS
    Org Lett; 2003 Feb; 5(3):285-7. PubMed ID: 12556173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An expeditious entry to 9-azabicyclo[3.3.1]nonane N-oxyl (ABNO): another highly active organocatalyst for oxidation of alcohols.
    Shibuya M; Tomizawa M; Sasano Y; Iwabuchi Y
    J Org Chem; 2009 Jun; 74(12):4619-22. PubMed ID: 19476345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-step preparation of 2,3,6-tricarboxy cellulose.
    Takaichi S; Hiraoki R; Inamochi T; Isogai A
    Carbohydr Polym; 2014 Sep; 110():499-504. PubMed ID: 24906784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TEMPO supported on magnetic C/Co-nanoparticles: a highly active and recyclable organocatalyst.
    Schätz A; Grass RN; Stark WJ; Reiser O
    Chemistry; 2008; 14(27):8262-6. PubMed ID: 18666291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel polyaniline-supported molybdenum-catalyzed aerobic oxidation of alcohols to aldehydes and ketones.
    Velusamy S; Ahamed M; Punniyamurthy T
    Org Lett; 2004 Dec; 6(26):4821-4. PubMed ID: 15606075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photooxidation of alcohols by a porphyrin/quinone/TEMPO system.
    Nagasawa T; Allakhverdiev SI; Kimura Y; Nagata T
    Photochem Photobiol Sci; 2009 Feb; 8(2):174-80. PubMed ID: 19247509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.