BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

467 related articles for article (PubMed ID: 16802802)

  • 21. [Development of versatile oxidation systems based on the design of oxoammonium salts].
    Shibuya M
    Yakugaku Zasshi; 2012; 132(10):1131-43. PubMed ID: 23037698
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Passerini three-component reaction of alcohols under catalytic aerobic oxidative conditions.
    Brioche J; Masson G; Zhu J
    Org Lett; 2010 Apr; 12(7):1432-5. PubMed ID: 20218637
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multipolymer reaction system for selective aerobic alcohol oxidation: simultaneous use of multiple different polymer-supported ligands.
    Chung CW; Toy PH
    J Comb Chem; 2007; 9(1):115-20. PubMed ID: 17206839
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly active, immobilized ruthenium catalysts for oxidation of alcohols to aldehydes and ketones. Preparation and use in both batch and flow systems.
    Kobayashi S; Miyamura H; Akiyama R; Ishida T
    J Am Chem Soc; 2005 Jun; 127(25):9251-4. PubMed ID: 15969605
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomimetic carbene-catalyzed oxidations of aldehydes using TEMPO.
    Guin J; De Sarkar S; Grimme S; Studer A
    Angew Chem Int Ed Engl; 2008; 47(45):8727-30. PubMed ID: 18846515
    [No Abstract]   [Full Text] [Related]  

  • 26. Tetraarylphosphonium salts as soluble supports for oxidative catalysts and reagents.
    Roy MN; Poupon JC; Charette AB
    J Org Chem; 2009 Nov; 74(22):8510-5. PubMed ID: 19856924
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly chemoselective aerobic oxidation of amino alcohols into amino carbonyl compounds.
    Sasano Y; Nagasawa S; Yamazaki M; Shibuya M; Park J; Iwabuchi Y
    Angew Chem Int Ed Engl; 2014 Mar; 53(12):3236-40. PubMed ID: 24554411
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expansion of Substrate Scope for Nitroxyl Radical/Copper-Catalyzed Aerobic Oxidation of Primary Alcohols: A Guideline for Catalyst Selection.
    Sasano Y; Yamaichi A; Sasaki R; Nagasawa S; Iwabuchi Y
    Chem Pharm Bull (Tokyo); 2021; 69(5):488-497. PubMed ID: 33952858
    [TBL] [Abstract][Full Text] [Related]  

  • 29. One-electron oxidation of ferrocenes by short-lived N-oxyl radicals. The role of structural effects on the intrinsic electron transfer reactivities.
    Baciocchi E; Bietti M; D'Alfonso C; Lanzalunga O; Lapi A; Salamone M
    Org Biomol Chem; 2011 Jun; 9(11):4085-90. PubMed ID: 21541382
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tuning the reactivity of TEMPO by coordination to a Lewis acid: isolation and reactivity of MCl3(η1-TEMPO) (M = Fe, Al).
    Scepaniak JJ; Wright AM; Lewis RA; Wu G; Hayton TW
    J Am Chem Soc; 2012 Nov; 134(47):19350-3. PubMed ID: 23134421
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SBA-15-functionalized 3-oxo-ABNO as recyclable catalyst for aerobic oxidation of alcohols under metal-free conditions.
    Karimi B; Farhangi E; Vali H; Vahdati S
    ChemSusChem; 2014 Sep; 7(9):2735-41. PubMed ID: 25049004
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxidation of alcohols to carbonyl compounds with diisopropyl azodicarboxylate catalyzed by nitroxyl radicals.
    Hayashi M; Shibuya M; Iwabuchi Y
    J Org Chem; 2012 Mar; 77(6):3005-9. PubMed ID: 22352461
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proline-based N-oxides as readily available and modular chiral catalysts. Enantioselective reactions of allyltrichlorosilane with aldehydes.
    Traverse JF; Zhao Y; Hoveyda AH; Snapper ML
    Org Lett; 2005 Jul; 7(15):3151-4. PubMed ID: 16018608
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Copper nanoparticles on hydrotalcite as a heterogeneous catalyst for oxidant-free dehydrogenation of alcohols.
    Mitsudome T; Mikami Y; Ebata K; Mizugaki T; Jitsukawa K; Kaneda K
    Chem Commun (Camb); 2008 Oct; (39):4804-6. PubMed ID: 18830499
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Copper/TEMPO catalysed synthesis of nitriles from aldehydes or alcohols using aqueous ammonia and with air as the oxidant.
    Dornan LM; Cao Q; Flanagan JC; Crawford JJ; Cook MJ; Muldoon MJ
    Chem Commun (Camb); 2013 Jul; 49(54):6030-2. PubMed ID: 23719631
    [TBL] [Abstract][Full Text] [Related]  

  • 36. One-pot, two-step synthesis of unnatural α-amino acids involving the exhaustive aerobic oxidation of 1,2-diols.
    Inada H; Furukawa K; Shibuya M; Yamamoto Y
    Chem Commun (Camb); 2019 Dec; 55(100):15105-15108. PubMed ID: 31782427
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dehydrogenative oxidation of alcohols in aqueous media using water-soluble and reusable Cp*Ir catalysts bearing a functional bipyridine ligand.
    Kawahara R; Fujita K; Yamaguchi R
    J Am Chem Soc; 2012 Feb; 134(8):3643-6. PubMed ID: 22339738
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly enantioselective organocatalytic oxidative kinetic resolution of secondary alcohols using chiral alkoxyamines as precatalysts: catalyst structure, active species, and substrate scope.
    Murakami K; Sasano Y; Tomizawa M; Shibuya M; Kwon E; Iwabuchi Y
    J Am Chem Soc; 2014 Dec; 136(50):17591-600. PubMed ID: 25412147
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Palladium-catalyzed Saegusa-Ito oxidation: synthesis of α,β-unsaturated carbonyl compounds from trimethylsilyl enol ethers.
    Lu Y; Nguyen PL; Lévaray N; Lebel H
    J Org Chem; 2013 Jan; 78(2):776-9. PubMed ID: 23256839
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transition-metal- and organic-solvent-free: a highly efficient anaerobic process for selective oxidation of alcohols to aldehydes and ketones in water.
    Gogoi P; Konwar D
    Org Biomol Chem; 2005 Oct; 3(19):3473-5. PubMed ID: 16172681
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.