BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 16802826)

  • 1. Two-state reactivity in alkane hydroxylation by non-heme iron-oxo complexes.
    Hirao H; Kumar D; Que L; Shaik S
    J Am Chem Soc; 2006 Jul; 128(26):8590-606. PubMed ID: 16802826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is the ruthenium analogue of compound I of cytochrome p450 an efficient oxidant? A theoretical investigation of the methane hydroxylation reaction.
    Sharma PK; De Visser SP; Ogliaro F; Shaik S
    J Am Chem Soc; 2003 Feb; 125(8):2291-300. PubMed ID: 12590559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A two-state reactivity rationale for counterintuitive axial ligand effects on the C-H activation reactivity of nonheme FeIV=O oxidants.
    Hirao H; Que L; Nam W; Shaik S
    Chemistry; 2008; 14(6):1740-56. PubMed ID: 18186094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome p450 enzymes.
    de Visser SP; Shaik S
    J Am Chem Soc; 2003 Jun; 125(24):7413-24. PubMed ID: 12797816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined experimental and theoretical study on aromatic hydroxylation by mononuclear nonheme iron(IV)-oxo complexes.
    de Visser SP; Oh K; Han AR; Nam W
    Inorg Chem; 2007 May; 46(11):4632-41. PubMed ID: 17444641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How axial ligands control the reactivity of high-valent iron(IV)-oxo porphyrin pi-cation radicals in alkane hydroxylation: a computational study.
    Kamachi T; Kouno T; Nam W; Yoshizawa K
    J Inorg Biochem; 2006 Apr; 100(4):751-4. PubMed ID: 16516298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic structure and spectroscopy of "superoxidized" iron centers in model systems: theoretical and experimental trends.
    Berry JF; DeBeer George S; Neese F
    Phys Chem Chem Phys; 2008 Aug; 10(30):4361-74. PubMed ID: 18654674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical predictions of a highly reactive non-heme Fe(IV)=O complex with a high-spin ground state.
    Cho KB; Shaik S; Nam W
    Chem Commun (Camb); 2010 Jul; 46(25):4511-3. PubMed ID: 20485734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactivity of compound II: electronic structure analysis of methane hydroxylation by oxoiron(IV) porphyrin complexes.
    Rosa A; Ricciardi G
    Inorg Chem; 2012 Sep; 51(18):9833-45. PubMed ID: 22946694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trends in substrate hydroxylation reactions by heme and nonheme iron(IV)-oxo oxidants give correlations between intrinsic properties of the oxidant with barrier height.
    de Visser SP
    J Am Chem Soc; 2010 Jan; 132(3):1087-97. PubMed ID: 20041691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The valence bond way: reactivity patterns of cytochrome P450 enzymes and synthetic analogs.
    Shaik S; Lai W; Chen H; Wang Y
    Acc Chem Res; 2010 Aug; 43(8):1154-65. PubMed ID: 20527755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How does product isotope effect prove the operation of a two-state "rebound" mechanism in C-H hydroxylation by cytochrome P450?
    Kumar D; de Visser SP; Shaik S
    J Am Chem Soc; 2003 Oct; 125(43):13024-5. PubMed ID: 14570465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A valence bond modeling of trends in hydrogen abstraction barriers and transition states of hydroxylation reactions catalyzed by cytochrome P450 enzymes.
    Shaik S; Kumar D; de Visser SP
    J Am Chem Soc; 2008 Aug; 130(31):10128-40. PubMed ID: 18616242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Propene activation by the oxo-iron active species of taurine/alpha-ketoglutarate dioxygenase (TauD) enzyme. How does the catalysis compare to heme-enzymes?
    de Visser SP
    J Am Chem Soc; 2006 Aug; 128(30):9813-24. PubMed ID: 16866538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fundamental differences of substrate hydroxylation by high-valent iron(IV)-oxo models of cytochrome P450.
    Tahsini L; Bagherzadeh M; Nam W; de Visser SP
    Inorg Chem; 2009 Jul; 48(14):6661-9. PubMed ID: 19469505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is the mu-oxo-mu-peroxodiiron intermediate of a ribonucleotide reductase biomimetic a possible oxidant of epoxidation reactions?
    de Visser SP
    Chemistry; 2008; 14(15):4533-41. PubMed ID: 18386299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin of the correlation of the rate constant of substrate hydroxylation by nonheme iron(IV)-oxo complexes with the bond-dissociation energy of the C-H bond of the substrate.
    Latifi R; Bagherzadeh M; de Visser SP
    Chemistry; 2009 Jul; 15(27):6651-62. PubMed ID: 19472231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative insight into electronic properties and reactivities toward C-H bond activation by iron(IV)-nitrido, iron(IV)-oxo, and iron(IV)-sulfido complexes: a theoretical investigation.
    Tang H; Guan J; Liu H; Huang X
    Inorg Chem; 2013 Mar; 52(5):2684-96. PubMed ID: 23425218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radical clock substrates, their C-H hydroxylation mechanism by cytochrome P450, and other reactivity patterns: what does theory reveal about the clocks' behavior?
    Kumar D; de Visser SP; Sharma PK; Cohen S; Shaik S
    J Am Chem Soc; 2004 Feb; 126(6):1907-20. PubMed ID: 14871124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactivity of high-valent iron-oxo species in enzymes and synthetic reagents: a tale of many states.
    Shaik S; Hirao H; Kumar D
    Acc Chem Res; 2007 Jul; 40(7):532-42. PubMed ID: 17488054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.