BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 16802826)

  • 21. Sulfoxidation mechanisms catalyzed by cytochrome P450 and horseradish peroxidase models: spin selection induced by the ligand.
    Kumar D; de Visser SP; Sharma PK; Hirao H; Shaik S
    Biochemistry; 2005 Jun; 44(22):8148-58. PubMed ID: 15924434
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of electronic structures and light-induced excited spin state trapping between [Fe(2-picolylamine)(3)](2+) and its iron(III) analogue.
    Ando H; Nakao Y; Sato H; Sakaki S
    Dalton Trans; 2010 Feb; 39(7):1836-45. PubMed ID: 20449430
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A density functional study on a biomimetic non-heme iron catalyst: insights into alkane hydroxylation by a formally HO-FeV=O oxidant.
    Bassan A; Blomberg MR; Siegbahn PE; Que L
    Chemistry; 2005 Jan; 11(2):692-705. PubMed ID: 15580652
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Substitution of hydrogen by deuterium changes the regioselectivity of ethylbenzene hydroxylation by an oxo-iron-porphyrin catalyst.
    de Visser SP
    Chemistry; 2006 Oct; 12(31):8168-77. PubMed ID: 16871510
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Density functional theory calculations of the lowest energy quintet and triplet states of model hemes: role of functional, basis set, and zero-point energy corrections.
    Khvostichenko D; Choi A; Boulatov R
    J Phys Chem A; 2008 Apr; 112(16):3700-11. PubMed ID: 18348545
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A non-radical mechanism for methane hydroxylation at the diiron active site of soluble methane monooxygenase.
    Yoshizawa K; Yumura T
    Chemistry; 2003 May; 9(10):2347-58. PubMed ID: 12772310
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The axial ligand effect on aliphatic and aromatic hydroxylation by non-heme iron(IV)-oxo biomimetic complexes.
    de Visser SP; Latifi R; Tahsini L; Nam W
    Chem Asian J; 2011 Feb; 6(2):493-504. PubMed ID: 21254427
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nonheme oxo-iron(IV) intermediates form an oxyl radical upon approaching the C-H bond activation transition state.
    Ye S; Neese F
    Proc Natl Acad Sci U S A; 2011 Jan; 108(4):1228-33. PubMed ID: 21220293
    [TBL] [Abstract][Full Text] [Related]  

  • 29. What factors affect the regioselectivity of oxidation by cytochrome p450? A DFT study of allylic hydroxylation and double bond epoxidation in a model reaction.
    de Visser SP; Ogliaro F; Sharma PK; Shaik S
    J Am Chem Soc; 2002 Oct; 124(39):11809-26. PubMed ID: 12296749
    [TBL] [Abstract][Full Text] [Related]  

  • 30. How does the axial ligand of cytochrome P450 biomimetics influence the regioselectivity of aliphatic versus aromatic hydroxylation?
    de Visser SP; Tahsini L; Nam W
    Chemistry; 2009; 15(22):5577-87. PubMed ID: 19347895
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of the axial ligand on distinct reaction tunneling for methane hydroxylation by nonheme iron(IV)-oxo complexes.
    Tang H; Guan J; Zhang L; Liu H; Huang X
    Phys Chem Chem Phys; 2012 Oct; 14(37):12863-74. PubMed ID: 22890313
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Manganese substituted Compound I of cytochrome P450 biomimetics: a comparative reactivity study of Mn(V)-oxo versus Mn(IV)-oxo species.
    Latifi R; Tahsini L; Karamzadeh B; Safari N; Nam W; de Visser SP
    Arch Biochem Biophys; 2011 Mar; 507(1):4-13. PubMed ID: 21216220
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantum mechanical/molecular mechanical investigation of the mechanism of C-H hydroxylation of camphor by cytochrome P450cam: theory supports a two-state rebound mechanism.
    Schöneboom JC; Cohen S; Lin H; Shaik S; Thiel W
    J Am Chem Soc; 2004 Mar; 126(12):4017-34. PubMed ID: 15038756
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A DFT study of nucleobase dealkylation by the DNA repair enzyme AlkB.
    Liu H; Llano J; Gauld JW
    J Phys Chem B; 2009 Apr; 113(14):4887-98. PubMed ID: 19338370
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Theoretical study of cyclohexane hydroxylation by three possible isomers of [FeIV(O)(R-TPEN)] 2+: does the pentadentate ligand wrapping around the metal center differently lead to the different stability and reactivity?
    Wang Y; Wang Y; Han K
    J Biol Inorg Chem; 2009 May; 14(4):533-45. PubMed ID: 19172312
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect and influence of cis-ligands on the electronic and oxidizing properties of nonheme oxoiron biomimetics. A density functional study.
    de Visser SP; Nam W
    J Phys Chem A; 2008 Dec; 112(50):12887-95. PubMed ID: 18616332
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-valent iron in chemical and biological oxidations.
    Groves JT
    J Inorg Biochem; 2006 Apr; 100(4):434-47. PubMed ID: 16516297
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Is the bound substrate in nitric oxide synthase protonated or neutral and what is the active oxidant that performs substrate hydroxylation?
    de Visser SP; Tan LS
    J Am Chem Soc; 2008 Oct; 130(39):12961-74. PubMed ID: 18774806
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Properties and reactivities of nonheme iron(IV)-oxo versus iron(V)-oxo: long-range electron transfer versus hydrogen atom abstraction.
    Karamzadeh B; Singh D; Nam W; Kumar D; de Visser SP
    Phys Chem Chem Phys; 2014 Nov; 16(41):22611-22. PubMed ID: 25231726
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for an alternative to the oxygen rebound mechanism in C-H bond activation by non-heme Fe(IV)O complexes.
    Cho KB; Wu X; Lee YM; Kwon YH; Shaik S; Nam W
    J Am Chem Soc; 2012 Dec; 134(50):20222-5. PubMed ID: 23205855
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.