These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 16802907)

  • 1. Transverse instability of avalanches in granular flows down an incline.
    Aranson IS; Malloggi F; Clément E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 1):050302. PubMed ID: 16802907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hysteresis in a hydrodynamic model of dense granular flows.
    Artoni R; Santomaso A; Canu P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051304. PubMed ID: 21728522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shallow granular flows.
    Takagi D; McElwaine JN; Huppert HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031306. PubMed ID: 21517493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Granular avalanches down inclined and vibrated planes.
    Gaudel N; Kiesgen de Richter S; Louvet N; Jenny M; Skali-Lami S
    Phys Rev E; 2016 Sep; 94(3-1):032904. PubMed ID: 27739816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid granular flows on a rough incline: phase diagram, gas transition, and effects of air drag.
    Börzsönyi T; Ecke RE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 1):061301. PubMed ID: 17280056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuum description of avalanches in granular media.
    Aranson IS; Tsimring LS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 1):020301. PubMed ID: 11497550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-varying force from dense granular avalanches on a wall.
    Chanut B; Faug T; Naaim M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041302. PubMed ID: 21230268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Instantaneous velocity profiles during granular avalanches.
    du Pont SC; Fischer R; Gondret P; Perrin B; Rabaud M
    Phys Rev Lett; 2005 Feb; 94(4):048003. PubMed ID: 15783603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initiation of immersed granular avalanches.
    Mutabaruka P; Delenne JY; Soga K; Radjai F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052203. PubMed ID: 25353783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model for dense granular flows down bumpy inclines.
    Louge MY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 1):061303. PubMed ID: 16241217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Segregation induced instabilities of granular fronts.
    Pouliquen O; Vallance JW
    Chaos; 1999 Sep; 9(3):621-630. PubMed ID: 12779857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An analysis of the entrainment effect of dry debris avalanches on loose bed materials.
    Lu PY; Yang XG; Xu FG; Hou TX; Zhou JW
    Springerplus; 2016; 5(1):1621. PubMed ID: 27652194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Avalanche dynamics on a rough inclined plane.
    Börzsönyi T; Halsey TC; Ecke RE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):011306. PubMed ID: 18763947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Granular avalanches in a two-dimensional rotating drum with imposed vertical vibration.
    Amon DL; Niculescu T; Utter BC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012203. PubMed ID: 23944450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shock waves in rapid flows of dense granular materials: theoretical predictions and experimental results.
    Pudasaini SP; Kröner C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041308. PubMed ID: 18999419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two scenarios for avalanche dynamics in inclined granular layers.
    Börzsönyi T; Halsey TC; Ecke RE
    Phys Rev Lett; 2005 May; 94(20):208001. PubMed ID: 16090290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional and real-scale modeling of flow regimes in dense snow avalanches.
    Li X; Sovilla B; Jiang C; Gaume J
    Landslides; 2021; 18(10):3393-3406. PubMed ID: 34776814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of correlations in the dynamics of wet granular avalanches.
    Tegzes P; Vicsek T; Schiffer P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 1):051303. PubMed ID: 12786142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of dry granular avalanches.
    Fischer R; Gondret P; Perrin B; Rabaud M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021302. PubMed ID: 18850826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental assessment of the effective friction at the base of granular chute flows on a smooth incline.
    Roche O; van den Wildenberg S; Valance A; Delannay R; Mangeney A; Corna L; Latchimy T
    Phys Rev E; 2021 Apr; 103(4-1):042905. PubMed ID: 34005905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.