These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 16802937)

  • 1. Static shear modulus of electrorheological fluids.
    Shi L; Tam WY; Huang X; Sheng P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 1):051501. PubMed ID: 16802937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shear-enhanced yield stress in electrorheological fluids.
    Lau KC; Shi L; Tam WY; Sheng P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 1):052502. PubMed ID: 12786202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrorheological suspensions of laponite in oil: rheometry studies.
    Parmar KP; Méheust Y; Schjelderupsen B; Fossum JO
    Langmuir; 2008 Mar; 24(5):1814-22. PubMed ID: 18215081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quasi-static electrorheological properties of hematite/silicone oil suspensions under DC electric fields.
    Espin MJ; Delgado AV; Płocharski J
    Langmuir; 2005 May; 21(11):4896-903. PubMed ID: 15896029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient response of an electrorheological fluid under square-wave electric field excitation.
    Tian Y; Li C; Zhang M; Meng Y; Wen S
    J Colloid Interface Sci; 2005 Aug; 288(1):290-7. PubMed ID: 15927589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation between Generated Shear Stress and Generated Permittivity for the Electrorheological Response of Colloidal Silica Suspensions.
    Saimoto Y; Satoh T; Konno M
    J Colloid Interface Sci; 1999 Nov; 219(1):135-143. PubMed ID: 10527579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrorheological Fluids with High Shear Stress Based on Wrinkly Tin Titanyl Oxalate.
    Wu J; Zhang L; Xin X; Zhang Y; Wang H; Sun A; Cheng Y; Chen X; Xu G
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6785-6792. PubMed ID: 29388421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible shear thickening at low shear rates of electrorheological fluids under electric fields.
    Tian Y; Zhang M; Jiang J; Pesika N; Zeng H; Israelachvili J; Meng Y; Wen S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 1):011401. PubMed ID: 21405692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling and analysis of electrorheological suspensions in shear flow.
    Seo YP; Seo Y
    Langmuir; 2012 Feb; 28(6):3077-84. PubMed ID: 22233263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrorheological fluid under elongation, compression, and shearing.
    Tian Y; Meng Y; Mao H; Wen S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 1):031507. PubMed ID: 11909066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrorheological fluids based on glycerol-activated titania gel particles and silicone oil with high yield strength.
    Yin JB; Zhao XP
    J Colloid Interface Sci; 2003 Jan; 257(2):228-36. PubMed ID: 16256474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new approach of enhancing the shear stress of electrorheological fluids of montmorillonite nanocomposite by emulsion intercalation of poly-N-methaniline.
    Lu J; Zhao X
    J Colloid Interface Sci; 2004 May; 273(2):651-7. PubMed ID: 15082406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and electrorheological property of rare earth modified amorphous BaxSr1-xTiO3 gel electrorheological fluid.
    Wu Q; Zhao By; Chen le S; Fang C; Hu Ka
    J Colloid Interface Sci; 2005 Feb; 282(2):493-8. PubMed ID: 15589557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure parameter of electrorheological fluids in shear flow.
    Jiang J; Tian Y; Meng Y
    Langmuir; 2011 May; 27(10):5814-23. PubMed ID: 21488694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrorheological properties of polyaniline suspensions: field-induced liquid to solid transition and residual gel structure.
    Hiamtup P; Sirivat A; Jamieson AM
    J Colloid Interface Sci; 2006 Mar; 295(1):270-8. PubMed ID: 16168424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of particle size on shear behavior of amine-group-immobilized polyacrylonitrile dispersed suspension under electric field.
    Ko YG; Choi US; Chun YJ
    J Colloid Interface Sci; 2009 Jul; 335(2):183-8. PubMed ID: 19409572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced dielectric polarization and electro-responsive characteristic of graphene oxide-wrapped titania microspheres.
    Yin J; Shui Y; Dong Y; Zhao X
    Nanotechnology; 2014 Jan; 25(4):045702. PubMed ID: 24394540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstructure-Confined Mechanical and Electric Properties of the Electrorheological Fluids under the Oscillatory Mechanical Field.
    Hao T; Xu Y
    J Colloid Interface Sci; 1997 Jan; 185(2):324-31. PubMed ID: 9028885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gelation of chitin and chitosan dispersed suspensions under electric field: effect of degree of deacetylation.
    Ko YG; Shin SS; Choi US; Park YS; Woo JW
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1289-98. PubMed ID: 21425802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Electrorheological Performance of Nb-Doped TiO2 Microspheres Based Suspensions and Their Behavior Characteristics in Low-Frequency Dielectric Spectroscopy.
    Guo X; Chen Y; Su M; Li D; Li G; Li C; Tian Y; Hao C; Lei Q
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26624-32. PubMed ID: 26570989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.