These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 16802974)

  • 1. Harmonic generation by yeast cells in response to low-frequency electric fields.
    Nawarathna D; Claycomb JR; Cardenas G; Gardner J; Warmflash D; Miller JH; Widger WR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 1):051914. PubMed ID: 16802974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harmonic response of cellular membrane pumps to low frequency electric fields.
    Nawarathna D; Miller JH; Claycomb JR; Cardenas G; Warmflash D
    Phys Rev Lett; 2005 Oct; 95(15):158103. PubMed ID: 16241766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gauging the strength of power frequency fields against membrane electrical noise.
    Bier M
    Bioelectromagnetics; 2005 Oct; 26(7):595-609. PubMed ID: 16142767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cylindrical cell membranes in uniform applied electric fields: validation of a transport lattice method.
    Stewart DA; Gowrishankar TR; Smith KC; Weaver JC
    IEEE Trans Biomed Eng; 2005 Oct; 52(10):1643-53. PubMed ID: 16235650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical analysis of transmembrane potential of cells exposed to nanosecond pulsed electric field.
    Lu W; Wu K; Hu X; Xie X; Ning J; Wang C; Zhou H; Yang G
    Int J Radiat Biol; 2017 Feb; 93(2):231-239. PubMed ID: 27586355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchronization of Na/K pump molecules by an oscillating electric field.
    Chen W; Zhang Z; Huang F
    J Bioenerg Biomembr; 2008 Aug; 40(4):347-57. PubMed ID: 18677554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of multiple frequency ELF electric and magnetic field exposure.
    Leitgeb N
    Phys Med Biol; 2008 Jan; 53(2):431-43. PubMed ID: 18184997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction between weak low frequency magnetic fields and cell membranes.
    Bauréus Koch CL; Sommarin M; Persson BR; Salford LG; Eberhardt JL
    Bioelectromagnetics; 2003 Sep; 24(6):395-402. PubMed ID: 12929158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid finite element method for describing the electrical response of biological cells to applied fields.
    Ying W; Henriquez CS
    IEEE Trans Biomed Eng; 2007 Apr; 54(4):611-20. PubMed ID: 17405368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical study of the electrical conductivity and polarization in a suspension of spherical cells.
    Ramos A; Suzuki DO; Marques JL
    Bioelectrochemistry; 2006 May; 68(2):213-7. PubMed ID: 16256446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Analysis of frequency-domain and window effect for cellular inner and outer membranes subjected to pulsatile electric field].
    Yao C; Chen X; Li C; Mi Y; Sun C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Feb; 28(1):12-7. PubMed ID: 21485174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model of a confined spherical cell in uniform and heterogeneous applied electric fields.
    Gowrishankar TR; Stewart DA; Weaver JC
    Bioelectrochemistry; 2006 May; 68(2):181-90. PubMed ID: 16230052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of electric field induced transmembrane potential on spheroidal cells: theory and experiment.
    Valic B; Golzio M; Pavlin M; Schatz A; Faurie C; Gabriel B; Teissié J; Rols MP; Miklavcic D
    Eur Biophys J; 2003 Sep; 32(6):519-28. PubMed ID: 12712266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mechanism for action of extremely low frequency electromagnetic fields on biological systems.
    Balcavage WX; Alvager T; Swez J; Goff CW; Fox MT; Abdullyava S; King MW
    Biochem Biophys Res Commun; 1996 May; 222(2):374-8. PubMed ID: 8670212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential effects of plasma membrane electric excitation on H+ fluxes and photosynthesis in characean cells.
    Bulychev AA; Kamzolkina NA
    Bioelectrochemistry; 2006 Oct; 69(2):209-15. PubMed ID: 16627011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on time-frequency characteristics of cellular transmenbrane potentials based on equivalent circuit model.
    Yao C; Hu X; Li C; Mi Y; Sun C
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1032-5. PubMed ID: 19162838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electric fields within cells as a function of membrane resistivity--a model study.
    Mossop BJ; Barr RC; Zaharoff DA; Yuan F
    IEEE Trans Nanobioscience; 2004 Sep; 3(3):225-31. PubMed ID: 15473075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling induced currents in biological cells exposed to low-frequency magnetic fields.
    Stuchly MA; Xi W
    Phys Med Biol; 1994 Sep; 39(9):1319-30. PubMed ID: 15552106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electric fields in bone marrow substructures at power-line frequencies.
    Chiu RS; Stuchly MA
    IEEE Trans Biomed Eng; 2005 Jun; 52(6):1103-9. PubMed ID: 15977739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of a 125 mT static magnetic field on the kinetics of voltage activated Na+ channels in GH3 cells.
    Rosen AD
    Bioelectromagnetics; 2003 Oct; 24(7):517-23. PubMed ID: 12955757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.