These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 16803005)

  • 61. A Wang-Landau study of a lattice model for lipid bilayer self-assembly.
    Gai L; Maerzke K; Cummings PT; McCabe C
    J Chem Phys; 2012 Oct; 137(14):144901. PubMed ID: 23061859
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Quantum critical behavior of the quantum Ising model on fractal lattices.
    Yi H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012118. PubMed ID: 25679581
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Phase transition of a one-dimensional Ising model with distance-dependent connections.
    Chang Y; Sun L; Cai X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 1):021101. PubMed ID: 17930000
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Calculating thermodynamics properties of quantum systems by a non-Markovian Monte Carlo procedure.
    Crespo Y; Laio A; Santoro GE; Tosatti E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 2):015702. PubMed ID: 19658767
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Anisotropy and universality in finite-size scaling: critical Binder cumulant of a two-dimensional Ising model.
    Kastening B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):044101. PubMed ID: 23679550
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Crossover and self-averaging in the two-dimensional site-diluted Ising model: application of probability-changing cluster algorithm.
    Tomita Y; Okabe Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036114. PubMed ID: 11580401
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Critical behavior of the long-range Ising chain from the largest-cluster probability distribution.
    Uzelac K; Glumac Z; Anicić A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):037101. PubMed ID: 11308799
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Wang-Landau algorithm as stochastic optimization and its acceleration.
    Dai C; Liu JS
    Phys Rev E; 2020 Mar; 101(3-1):033301. PubMed ID: 32289991
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Information theoretic aspects of the two-dimensional Ising model.
    Lau HW; Grassberger P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022128. PubMed ID: 23496480
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Accurate estimation of the density of states from Monte Carlo transition probability data.
    Fenwick MK
    J Chem Phys; 2006 Oct; 125(14):144905. PubMed ID: 17042648
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Backbone exponents of the two-dimensional q-state Potts model: a Monte Carlo investigation.
    Deng Y; Blöte HW; Nienhuis B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026114. PubMed ID: 14995527
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Detection of an intermediate biaxial phase in the phase diagram of biaxial liquid crystals: entropic sampling study.
    Kamala Latha B; Jose R; Murthy KP; Sastry VS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):050501. PubMed ID: 25353730
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Universal dependence on disorder of two-dimensional randomly diluted and random-bond +/-J Ising models.
    Hasenbusch M; Toldin FP; Pelissetto A; Vicari E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):011110. PubMed ID: 18763922
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Local-functional theory of critical adsorption.
    Borjan Z; Upton PJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):065102. PubMed ID: 11415157
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Finite-size scaling study of the vapor-liquid critical properties of confined fluids: Crossover from three dimensions to two dimensions.
    Liu Y; Panagiotopoulos AZ; Debenedetti PG
    J Chem Phys; 2010 Apr; 132(14):144107. PubMed ID: 20405985
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Dynamically optimized Wang-Landau sampling with adaptive trial moves and modification factors.
    Koh YW; Lee HK; Okabe Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053302. PubMed ID: 24329374
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Persistence problem in two-dimensional fluid turbulence.
    Perlekar P; Ray SS; Mitra D; Pandit R
    Phys Rev Lett; 2011 Feb; 106(5):054501. PubMed ID: 21405401
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Nonequilibrium behaviors of the three-dimensional Heisenberg model in the Swendsen-Wang algorithm.
    Nonomura Y; Tomita Y
    Phys Rev E; 2016 Jan; 93(1):012101. PubMed ID: 26871018
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Universality of chaotic rare fluctuations in a locally coupled phase map model.
    Watanabe T; Tsubo Y; Fujisaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026213. PubMed ID: 11863638
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Performances of Wang-Landau algorithms for continuous systems.
    Poulain P; Calvo F; Antoine R; Broyer M; Dugourd P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056704. PubMed ID: 16803071
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.